NB: This document sums up as much symbols, notations and conventions used for the Maths MA101 and MA102 courses (@MEC) as possible. If something is missing, please tell us.

Warning: For quizzes, tutorial sessions and assignments, homeworks, exams and lectures, you **have to** use these conventions.

English shortcuts

i.e. : $id est^1$, "that is",

e.g. : *exempli gratia*¹, "for example" (does **not** come from "example given").

Basic notations for functions or formulas

- f(x): the value of the function f at the point x, defined when x belongs to the domain of f (written as D_f),
- \longrightarrow : to specify the domain for a function, *e.g.* sin: $\mathbb{R} \longrightarrow \mathbb{R}$,
- f(A): the *image set* of A by f, *i.e.* the set of values f(x) for all the x in the set A: $\{f(x) : x \in A\}$. Example: $sin(\mathbb{R}) = [-1, 1],$
- $f^{-1}(B)$: the *pre-image set* of B by f, *i.e.* the set of points of A that are mapped to points of B by the function f: { $x \in A : f(x) \in B$ }. Example: $\sin^{-1}(\{0\}) = 2\pi\mathbb{Z}$,
- $f_{|A|}$: the restriction of the function $f: E \longrightarrow F$ to the subset $A \subset E$,
- \forall : "for all", e.g. $\forall x \in \mathbb{R}, \exp(x) > 0$ says that all values $\exp(x)$ are positive for any real number x,
- \exists : "there exists", e.g. $\exists x > 0, \cos(x) = -1$ says that there is a positive real number x such that $\cos(x) = -1$.

Logical binary predicates

- \implies : implies, e.g. $(x > 0) \implies (x \ge 0)$,
- \Leftrightarrow : is equivalent to, *i.e.* "implies and is implied by". $A \Leftrightarrow B \equiv (A \Leftrightarrow B)$ and $(B \Leftrightarrow A)$,
- \neg : logical negation of a formula, *e.g.* $\neg(\omega > 0) \equiv \omega \leq 0$.

Binary predicates for set

- \in : belongs to, e.g. $n\in\mathbb{N},\,i\in\mathbb{C}$ etc,
- \notin : does not belong to, *e.g.* $-1 \notin \mathbb{R}_+$,
- \subset : is included in, *e.g.* $\mathbb{N} \subset \mathbb{R}$,
- \supset : contains, e.g. $\mathbb{Z} \supset \{-1, 0, 1\}$ (we try to not use this one),
- \subseteq : to precise that inclusion *can be an equality*, as the opposite of \subsetneq which excludes the equality,
- $\ : \text{ difference of two sets, } e.g. \ \mathbb{R} \setminus \mathbb{R}_{-} = \mathbb{R}_{+}^{*}. \text{ Especially used for } \mathbb{K}^{*} = \mathbb{K} \setminus \{0\},$
- \cap : intersection of two sets (also \bigcap), e.g. $\mathbb{C} \cap \mathbb{Z} = \mathbb{Z}$,
- \cup : union of two sets (also []), e.g. $\{0\} \cup \mathbb{N}^* = \mathbb{N}$,
- $E_1 \times E_2$: Cartesian product of two sets E_1 and E_2 , *i.e.* $\{(x, y) : x \in E_1, y \in E_2\},\$

 $E_1 \oplus E_n : \text{ direct sum of two sets } E_1, E_2 \subset E, \text{ i.e. } \{x + y : x \in E_1, y \in E_2\}, \text{ where } E_1 \cap E_2 = \{0_E\}.$ (MA102)

 1 It is latin.

MA102

Shortcuts for sums and products

 $\sum_{k=1}^{n} f(k) : \operatorname{sum} f(1) + f(2) + \dots + f(n-1) + f(n) \text{ for } n \ge 0. \text{ The convention defines an empty sum as } 0 \text{ (when } n = 0),$ $\prod_{k=1}^{n} g(k) : \operatorname{product} g(1) \times g(2) \times \dots \times g(n-1) \times g(n) \text{ for } n \ge 0. \text{ An empty product as } 1 \text{ (when } n = 0),$ $\sum_{k=1}^{n} E_k : \operatorname{Cartesian product} (\operatorname{for spaces}) : E_1 \times E_2 \times \dots \times E_{n-1} \times E_n \text{ for } n \ge 1,$ $\bigoplus_{k=1}^{n} E_k : \operatorname{direct sum} (\operatorname{for spaces}) : E_1 \oplus E_2 \oplus \dots \oplus E_{n-1} \oplus E_n \text{ for } n \ge 1.$ (MA102)

Usual constants and functions

 π : (pi), usually defined by the quotient of any circle perimeter by its diameter, $\pi \simeq 3.14159265$,

e : base of the exponential function, *i.e.* $e^{def} = e^1 = exp(1), e \simeq 2.71828183,$

 $+\infty\,$: positive infinite, $-\infty$ negative infinite, ∞ infinite,

sign : sign function, defined by sign : $\mathbb{R} \longrightarrow \mathbb{R}, 0 \mapsto 0, x \mapsto 1$ if x > 0, -1 if x < 0,

exp: exponential function, *i.e.* exp: $\mathbb{R} \longrightarrow \mathbb{R}, x \mapsto \exp(x) = e^x$,

ln : Neperian logarithm function, *i.e.* logarithm in basis 10: $\ln : \mathbb{R}^*_+ \longrightarrow \mathbb{R}, x \mapsto \ln(x)$ (also written $\log(x)$),

 $\log_y \, : \, \text{logarithm function in basis } y \ (y > 0, y \neq 1), \, \text{defined as: } \log_y : \mathbb{R}^*_+ \longrightarrow \mathbb{R}, x \mapsto \ln(x) / \log(y),$

 $\cos\,:\, {\rm cosine},\, {\rm sin}:\, {\rm sinus}\,\,(\mathbb{R}\longrightarrow\mathbb{R}),\, {\rm tan}:\, {\rm tangent}\,\,(\mathbb{R}\backslash\frac{\pi}{2}\mathbb{Z}\longrightarrow\mathbb{R}),$

arccos : arc cosine, arcsin : arc sinus, arctan : arc tangent (reciprocal),

 \cosh : hyperbolic cosine, \sinh : hyperbolic sinus, \tanh : hyperbolic tangent ($\mathbb{R} \longrightarrow \mathbb{R}$),

arccosh : arc hyperbolic cosine, arcsinh : arc hyperbolic sinus, arctanh : arc hyperbolic tangent (reciprocal),

floor : lower integer round, *i.e.* floor(x) $\stackrel{\text{def}}{=} [x]$ the biggest integer $n \in \mathbb{Z}$ to be smaller than x,

ceil : upper integer round, *i.e.* $\operatorname{ceil}(x) \stackrel{\text{def}}{=} [x]$ the smallest integer $n \in \mathbb{Z}$ to be bigger than x,

det : determinant, com : co-matrix,	(MA102)
-------------------------------------	---------

 I_n : identity matrix of size $n \ge 0$. (MA102)

 $\delta_{i,j}$: KRONECKER's symbol, $\delta_{i,j}: (k,l) \mapsto 1$ if k = i and l = j, 0 otherwise,

Usual sets

 \emptyset : the empty set (*it is unique*, even if included in any set),

 $\{x: P(x)\}$: set of all elements x satisfying verifying a certain property P(x), e.g. $\{x \in \mathbb{R} : x \ge 0\} = \mathbb{R}_+$,

 \mathbb{N} : non-negative natural numbers, $\mathbb{N} = \{0, 1, \dots, n-1, n, n+1, \dots\}$. Warning: this set \mathbb{N} starts from 0,

 \mathbb{Z} : (ring of the) integer numbers, $\mathbb{Z} = \{\dots, -n-1, -n, -n+1, \dots, -1, 0, 1, \dots, n-1, n, n+1, \dots\},$

 $\mathbb{Q} \ : \ (\text{field of the}) \ \text{rational numbers}, \ \mathbb{Q} \stackrel{\text{\tiny def}}{=} \bigg\{ \frac{p}{q}, (p,q) \in \mathbb{Z} \times \mathbb{N}^* \bigg\},$

- $\mathbbm{R}\,$: (field of the) real numbers,
- [a,b] : segment (close interval), *i.e.* $[a,b] \stackrel{\text{\tiny def}}{=} \{x \in \mathbb{R} : a \leq x \leq b\},\$

(MA102)

 $^{^{2}}$ If you are curious, this page on Wikipédia explains *how* and *why* we have to limit the expressiveness of this way to define set, otherwise we can conclude paradoxes, as the famous Russel's paradox.

- (a, b): open interval, *i.e.* $(a, b) \stackrel{\text{def}}{=} \{x \in \mathbb{R} : a < x < b\},\$
- [a,b): half-open on the right interval, *i.e.* $[a,b) \stackrel{\text{def}}{=} \{x \in \mathbb{R} : a \leq x < b\}$
- (a, b]: half-open on the left interval, *i.e.* $(a, b] \stackrel{\text{def}}{=} \{x \in \mathbb{R} : a < x \leq b\},\$
- \mathbb{C} : (field of the) complex numbers, $\mathbb{C} \stackrel{\text{def}}{=} \{a + ib : a, b \in \mathbb{R}\},\$
- \mathbb{K} : any (commutative) field, usually understood as " \mathbb{R} or \mathbb{C} ",
- E^n : product set, set of the *n*-tuples (x_1, \ldots, x_n) of values of E, *i.e.* $\{(x_1, \ldots, x_n) : \forall 1 \le i \le n, x_i \in E\}$, *e.g.* $\mathbb{R}^2 \simeq \mathbb{C}$,
- $\mathbb{M}_{n,m}(A)$: set of $n \times m$ -sized matrices $(n, m \in \mathbb{N})$, also written as $M_{n,m}(A)$ or $\mathcal{M}_{n,m}(A)$, (MA102)

Operators for sets

- Card : cardinal of a set, *i.e.* number of its elements, also written $Card(E) \stackrel{\text{def}}{=} |E| \stackrel{\text{def}}{=} (also \#E \text{ in some American books}),$
- $\mathcal{P}(E)$: set of subsets of E (also written 2^E in French books),
- E^* : the set *E* without its zero³ 0, *i.e.* $E^* \stackrel{\text{def}}{=} E \setminus \{0\},\$
- E_+ : the subset of non-negative³ elements of E, *i.e.* $E_+ \stackrel{\text{def}}{=} E \cap [0, +\infty),$
- E_{-} : the subset of non-positive³ elements of E, *i.e.* $E_{-} \stackrel{\text{def}}{=} E \cap (-\infty, 0]$,
- E^{c} : complementary set of E (when this is not ambiguous), e.g. in $\{1, 2, 3, 4, 5\}, \{1, 2, 5\}^{c} = \{3, 4\},$
- δE : frontier of the set E, e.g. $\delta \mathcal{B}_2(0,1) = \mathcal{C}_2(0,1)$ (ball and sphere being centered at 0 and of radii 1, in 2D),
- E° : interior of the set E, *i.e.* $E^{\circ} \stackrel{\text{\tiny def}}{=} E \setminus \delta E$ (also written int(E)),
- $\overline{E} : \text{cloture of } E, \text{ i.e. } \overline{E} \stackrel{\text{def}}{=} \bigg\{ \lim_{n \longrightarrow +\infty} u_n, (u_n)_{n \in \mathbb{N}} \in E^{\mathbb{N}} \text{ being convergent} \bigg\},$
- d(x,y): distance between two points x and y, usually d(x,y) = |x y|,
- d(x,A): distance from the point x to the subset $A \stackrel{\text{def}}{=} \inf_{a \in A} |x a|$,
- d(A,B): distance from two subsets A and B ($\stackrel{\text{def}}{=} \inf_{(a,b)\in A\times B} |a-b|$),
- A + B: sum of two subsets A and B (= { $a + b : (a, b) \in A \times B$ }),
- A B: subtraction of two subsets A and B (= { $a b : (a, b) \in A \times B$ }),
- diam(A) : diameter of a subset A, *i.e.* diam(A) $\stackrel{\text{def}}{=} \sup \{ |x y|, (x, y) \in A^2 \},$ (MA102)

 $\chi_A \ : \ \text{characteristic function for} \ A \subset E, \ i.e. \ \ E \longrightarrow \{0,1\}, x \mapsto 1 \ \text{if} \ x \in A, \ 0 \ \text{otherwise},$

 $\dim(E)$: dimension of a space E ($\dim_{\mathbb{K}}(A)$]: dimension of a subset $A \subset E$, as a \mathbb{K} -vectorial-space). (MA102)

Orders and relationships

- <: (strictly) lower than, e.g. $1 < \sqrt{2}$,
- \leq : lower or equal than, *e.g.* $1 \leq 1$,
- > : (strictly) greater than, e.g. $1 > e^{-1}$,
- \geq : greater or equal than, e.g. $2 \geq 2$,
- \equiv : "same meaning", or semantical identity for formulas : $\neg(\neg P) \equiv P$,
- \simeq : similar, *e.g.* for numerical approximations : $\pi \simeq 3.14$ or $\sqrt{2} \simeq 1.4142$,
- ~ : numerically equivalent, for a limit, e.g. $\frac{\sin(7x)}{x} \underset{x \longrightarrow 0, x \neq 0}{\sim} 7$.

³When this as a meaning.

Other binary operators

 \circ : composition of functions, if $f: E \longrightarrow F, g: F \longrightarrow G$, then $f \circ g: E \longrightarrow G, x \mapsto f(g(x))$,

x.y : inner product, also written $\langle \mathbf{x}, \mathbf{y} \rangle$, *e.g.* [1;2;3].[4;5;6] = 1 * 4 + 2 * 5 + 3 * 6 = 32,

 $\mathbf{x} \times \mathbf{y}$: vectorial product, *e.g.* [1;2;3] × [4;5;6] = [-3;6;-6],

- |: divisibility (for integers, or polynomials), e.g. 5 | 2015,
- . mod . : used to write equality *modulo* another number, *e.g.* $17 = 2 \mod 5$.

Usual unary operators

 $\mathcal{R}e$: real part for a complex number, *i.e.* $\mathcal{R}e(a+ib) = a$, also written as $\mathcal{R}eal(z)$,

 $\mathcal{I}m$: imaginary part for a complex number, *i.e.* $\mathcal{I}m(a+ib) = b$, also written as $\mathcal{I}mag(z)$,

sup : best upper-bound of a set (smaller upper-bound), warning: when it exists,

inf : best lower-bound of a set (bigger lower-bound), warning: when it exists,

lim : limit, usually we specify $\lim_{x \to 0}$ to say "when x tends to 0",

 $\lim_{x \to 0, x \neq 0}$: a special case⁴, which specifies that "x tends to 0 while being always non-zero",

arg : one argument (for a complex number), e.g. $\arg(e^{i\pi/4}) = \pi/4$ but $\pi/4 + 2\pi$ is also a valid argument. Warning: the formula $\arg(x + iy) = \arctan \frac{y}{x}$ is not always true! (only true if x > 0 in fact).

Notations for the limits

 \longrightarrow : for a limit : $n \longrightarrow +\infty$ means that "n tends to $+\infty$ ",

 $x \longrightarrow a^+$: means that x tends to a by being greater than a (*i.e.* $x > a, x \longrightarrow a$),

 $x \longrightarrow a^{-}$: means that x tends to a by being lower than a (*i.e.* $x < a, x \longrightarrow a$),

 $f(x^+)$: limit of f at x for smaller values, *i.e.* $f(x^+) \stackrel{\text{def}}{=} \lim_{y \longrightarrow x^+} f(y)$,

 $f(x^{-})$: limit of f at x for bigger values, *i.e.* $f(x^{-}) \stackrel{\text{def}}{=} \lim_{y \longrightarrow x^{-}} f(y).$

Other notations

 \overline{z} : conjugate of a complex number, *i.e.* $\overline{a+ib} \stackrel{\text{\tiny def}}{=} a-ib$,

|z|: absolute value of a number (real or complex), e.g. $|a+ib| \stackrel{\text{def}}{=} \sqrt{a^2+b^2}$ or |-2.73| = 2.73,

 \mathbf{x}, \mathbf{y} : are for the vectors x, y. Sometimes also written as \vec{u}, \vec{v} etc.

 $|\mathbf{x}|$: norm of the vector \mathbf{x} , e.g. $|[1;2;3]| = \sqrt{1^2 + 2^2 + 3^2} \simeq 3.741$,

 $\|.\|$: unified notation for a norm. There is also the p norm: $\|.\|_p$, and the infinite norm $\|.\|_{+\infty}$],

 $(u_n)_{n\in\mathbb{N}}$: the sequence of $u_n\in E$, *i.e.* the function $u:\mathbb{N}\longrightarrow E$, $n\mapsto u_n$. A (bad) shortcut is $\{u_n\}$.

⁴It can be adapted to other situations, *e.g.* $\lim_{(h,k)\to(0,0),(h,k)\neq(0,0)}$ for a limit when the vector (h,k) tends to (0,0) but is never zero.

MA102

Derivatives and differential calculus

f': derivative⁵ of f, e.g. $\ln': x \mapsto \frac{1}{x}, \forall x > 0$. May be written x, but only in physics,

f'': second derivative of f (or \ddot{x} in physics)), f''' third derivative, ..., $f^{(n)}$ n^{th} derivative for $n \ge 0$,

 f^n : n^{th} power of f for $n \ge 0$ (be careful, it is not a derivative $f^{(n)}$!),

 $\frac{\partial f}{\partial x_i}$: partial derivative of f for the jth coordinate, also written as f_{x_j} . e.g. for f(x, y), we have f_x and f_y ,

 ∇f : gradient of f (also written **grad** f or $\overrightarrow{grad} f$),

 $\operatorname{div} f$: divergence of f.

Integrals

$$\int_a^b f(x) \mathrm{d}x \ : \ \mathrm{integral} \ \mathrm{of} \ \mathrm{the} \ \mathrm{function} \ f: x \mapsto f(x) \ \mathrm{on} \ (a,b),$$

 $\int f : \text{ integral of the function } f \text{ on its domain (when it is not ambiguous), or a primitive of } f (i.e. \text{ an anti-derivative}),$

$$\oint f(x) dx$$
 : curvilinear integral of f , (MA102)

 $\iint_{(a,b)\times(c,d)} f(x,y) dx dy : \text{double integral of the 2-variables function } f:(a,b)\times(c,d), (x,y) \mapsto f(x,y). \tag{MA102}$

Some rare notation for functions spaces

 $\mathcal{F}(E,F)$: functions from E to F, *i.e.* F^E ,

- $\mathcal{C}(E,F)$: continuous functions from E to F,
- $\mathcal{C}(E)\,$: continuous functions from E to E,

 $C_b(E,F)$: bounded and continuous functions from E to F,

 $\mathcal{C}^{k}(E,F)$: k-time differentiable functions, of k^{th} derivatives being continuous, from E to F ($k \in \mathbb{N}$),

 $\mathcal{C}^{\infty}(E,F)$: infinitely differentiable functions, from E to F,

$\mathcal{L}(E,F)$: linear applications from E to F ,	(MA102)
$\mathcal{L}(E)$: linear applications from E to E,	(MA102)
$\mathcal{L}_{c}(E,F)$: continuous and linear applications from E to F.	(MA102)

Want more? A list of mathematical symbols : http://en.wikipedia.org/wiki/Table_of_mathematical_symbols, on Wikipédia, and some others lists on mathematical notations, on Wikipédia.

⁵If it exists!