NB : This document sums up as much symbols, notations and conventions used for the Maths MA101 and MA102 courses (@MEC) as possible. If something is missing, please tell us.

Warning: For quizzes, tutorial sessions and assignments, homeworks, exams and lectures, you have to use these conventions.

English shortcuts

i.e. : id es " "that is",
e.g. : exempli gratid ${ }^{1}$, "for example" (does not come from "example given").

Basic notations for functions or formulas

$f(x)$: the value of the function f at the point x, defined when x belongs to the domain of f (written as D_{f}),
$\longrightarrow:$ to specify the domain for a function, e.g. $\sin : \mathbb{R} \longrightarrow \mathbb{R}$,
$f(A)$: the image set of A by f, i.e. the set of values $f(x)$ for all the x in the set $A:\{f(x): x \in A\}$. Example: $\sin (\mathbb{R})=[-1,1]$,
$f^{-1}(B)$: the pre-image set of B by f, i.e. the set of points of A that are mapped to points of B by the function f : $\{x \in A: f(x) \in B\}$. Example: $\sin ^{-1}(\{0\})=2 \pi \mathbb{Z}$,
$f_{\mid A}:$ the restriction of the function $f: E \longrightarrow F$ to the subset $A \subset E$,
$\forall:$ "for all", e.g. $\forall x \in \mathbb{R}, \exp (x)>0$ says that all values $\exp (x)$ are positive for any real number x,
\exists : "there exists", e.g. $\exists x>0, \cos (x)=-1$ says that there is a positive real number x such that $\cos (x)=-1$.

Logical binary predicates

\Longrightarrow : implies, e.g. $\quad(x>0) \Longrightarrow(x \geqslant 0)$,
\Leftrightarrow : is equivalent to, i.e. "implies and is implied by". $A \Leftrightarrow B \equiv(A \Leftrightarrow B)$ and $(B \Leftrightarrow A)$,
\neg : logical negation of a formula, e.g. $\neg(\omega>0) \equiv \omega \leqslant 0$.

Binary predicates for set

$\in:$ belongs to, e.g. $n \in \mathbb{N}, i \in \mathbb{C}$ etc,
$\notin:$ does not belong to, e.g. $-1 \notin \mathbb{R}_{+}$,
$\subset:$ is included in, e.g. $\mathbb{N} \subset \mathbb{R}$,
$\supset:$ contains, e.g. $\mathbb{Z} \supset\{-1,0,1\}$ (we try to not use this one),
$\subseteq:$ to precise that inclusion can be an equality, as the opposite of \subsetneq which excludes the equality,
$\backslash:$ difference of two sets, e.g. $\mathbb{R} \backslash \mathbb{R}_{-}=\mathbb{R}_{+}^{*}$. Especially used for $\mathbb{K}^{*}=\mathbb{K} \backslash\{0\}$,
\cap : intersection of two sets (also \bigcap), e.g. $\mathbb{C} \cap \mathbb{Z}=\mathbb{Z}$,
\cup : union of two sets (also \bigcup), e.g. $\{0\} \cup \mathbb{N}^{*}=\mathbb{N}$,
\uplus : disjunct union of two sets (also \biguplus), e.g. $\mathbb{R}_{-}^{*} \uplus \mathbb{R}_{+}^{*}$ (also \sqcup or \bigsqcup),
$E_{1} \times E_{2}:$ Cartesian product of two sets E_{1} and E_{2}, i.e. $\left\{(x, y): x \in E_{1}, y \in E_{2}\right\}$,
$E_{1} \oplus E_{n}$: direct sum of two sets $E_{1}, E_{2} \subset E$, i.e. $\left\{x+y: x \in E_{1}, y \in E_{2}\right\}$, where $E_{1} \cap E_{2}=\left\{0_{E}\right\}$.
(MA102)

[^0]
Shortcuts for sums and products

$\sum_{k=1}^{n} f(k): \operatorname{sum} f(1)+f(2)+\cdots+f(n-1)+f(n)$ for $n \geqslant 0$. The convention defines an empty sum as 0 (when $n=0$),
$\prod_{k=1}^{n} g(k):$ product $g(1) \times g(2) \times \cdots \times g(n-1) \times g(n)$ for $n \geqslant 0$. An empty product as 1 (when $n=0$),
$\underset{k=1}{\chi} E_{k}:$ Cartesian product (for spaces) : $E_{1} \times E_{2} \times \cdots \times E_{n-1} \times E_{n}$ for $n \geqslant 1$,
$\bigoplus_{k=1}^{n} E_{k}$: direct sum (for spaces) : $E_{1} \oplus E_{2} \oplus \cdots \oplus E_{n-1} \oplus E_{n}$ for $n \geqslant 1$.
(MA102)

Usual constants and functions

$\pi:(\mathrm{pi})$, usually defined by the quotient of any circle perimeter by its diameter, $\pi \simeq 3.14159265$,
e : base of the exponential function, i.e. $\mathrm{e} \stackrel{\text { def }}{=} \mathrm{e}^{1}=\exp (1), \mathrm{e} \simeq 2.71828183$,
$+\infty$: positive infinite, $-\infty$ negative infinite, ∞ infinite,
sign : sign function, defined by sign : $\mathbb{R} \longrightarrow \mathbb{R}, 0 \mapsto 0, x \mapsto 1$ if $x>0,-1$ if $x<0$,
$\exp : \operatorname{exponential}$ function, i.e. $\exp : \mathbb{R} \longrightarrow \mathbb{R}, x \mapsto \exp (x)=\mathrm{e}^{x}$,
$\ln :$ Neperian logarithm function, i.e. logarithm in basis $10: \ln : \mathbb{R}_{+}^{*} \longrightarrow \mathbb{R}, x \mapsto \ln (x)$ (also written $\log (x)$),
$\log _{y}: \operatorname{logarithm}$ function in basis $y(y>0, y \neq 1)$, defined as: $\log _{y}: \mathbb{R}_{+}^{*} \longrightarrow \mathbb{R}, x \mapsto \ln (x) / \log (y)$,
$\cos :$ cosine, sin : sinus $(\mathbb{R} \longrightarrow \mathbb{R})$, tan : tangent $\left(\mathbb{R} \backslash \frac{\pi}{2} \mathbb{Z} \longrightarrow \mathbb{R}\right)$,
arccos : arc cosine, arcsin : arc sinus, arctan : arc tangent (reciprocal),
cosh : hyperbolic cosine, sinh : hyperbolic sinus, tanh : hyperbolic tangent $(\mathbb{R} \longrightarrow \mathbb{R})$,
arccosh : arc hyperbolic cosine, arcsinh : arc hyperbolic sinus, arctanh : arc hyperbolic tangent (reciprocal),
floor : lower integer round, i.e. floor $(x) \stackrel{\text { def }}{=}\lfloor x\rfloor$ the biggest integer $n \in \mathbb{Z}$ to be smaller than x,
ceil : upper integer round, i.e. $\operatorname{ceil}(x) \stackrel{\text { def }}{=}\lceil x\rceil$ the smallest integer $n \in \mathbb{Z}$ to be bigger than x,
det : determinant, com : co-matrix,
(MA102)
I_{n} : identity matrix of size $n \geqslant 0$.
$\delta_{i, j}:$ KRONECKER's symbol, $\delta_{i, j}:(k, l) \mapsto 1$ if $k=i$ and $l=j, 0$ otherwise,

Usual sets

\varnothing : the empty set (it is unique, even if included in any set),
$\{x: P(x)\}$: set of all elements x satisfying verifying a certain property $\}^{2} P(x)$, e.g. $\{x \in \mathbb{R}: x \geqslant 0\}=\mathbb{R}_{+}$,
\mathbb{N} : non-negative natural numbers, $\mathbb{N}=\{0,1, \ldots, n-1, n, n+1, \ldots\}$. Warning: this set \mathbb{N} starts from 0,
$\mathbb{Z}:($ ring of the) integer numbers, $\mathbb{Z}=\{\ldots,-n-1,-n,-n+1, \ldots,-1,0,1, \ldots, n-1, n, n+1, \ldots\}$,
$\mathbb{Q}:\left(\right.$ field of the) rational numbers, $\mathbb{Q} \stackrel{\text { def }}{=}\left\{\frac{p}{q},(p, q) \in \mathbb{Z} \times \mathbb{N}^{*}\right\}$,
\mathbb{R} : (field of the) real numbers,

- $[a, b]:$ segment (close interval), i.e. $[a, b] \stackrel{\text { def }}{=}\{x \in \mathbb{R}: a \leqslant x \leqslant b\}$,

[^1]- (a, b) : open interval, i.e. $(a, b) \stackrel{\text { def }}{=}\{x \in \mathbb{R}: a<x<b\}$,
- $[a, b)$: half-open on the right interval, i.e. $[a, b) \stackrel{\text { def }}{=}\{x \in \mathbb{R}: a \leqslant x<b\}$,
- $(a, b]$: half-open on the left interval, i.e. $(a, b] \stackrel{\text { def }}{=}\{x \in \mathbb{R}: a<x \leqslant b\}$,
$\mathbb{C}:($ field of the) complex numbers, $\mathbb{C} \stackrel{\text { def }}{=}\{a+i b: a, b \in \mathbb{R}\}$,
\mathbb{K} : any (commutative) field, usually understood as " \mathbb{R} or \mathbb{C} ",
$E^{n}:$ product set, set of the n-tuples $\left(x_{1}, \ldots, x_{n}\right)$ of values of E, i.e. $\left\{\left(x_{1}, \ldots, x_{n}\right): \forall 1 \leqslant i \leqslant n, x_{i} \in E\right\}$, e.g. $\mathbb{R}^{2} \simeq \mathbb{C}$,
$\mathbb{M}_{n, m}(A):$ set of $n \times m$-sized matrices $(n, m \in \mathbb{N})$, also written as $M_{n, m}(A)$ or $\mathcal{M}_{n, m}(A)$,
(MA102)

Operators for sets

Card : cardinal of a set, i.e. number of its elements, also written $\operatorname{Card}(E) \stackrel{\text { def }}{=}|E| \stackrel{\text { def }}{=}$ (also $\# E$ in some American books),
$\mathcal{P}(E)$: set of subsets of E (also written 2^{E} in French books),
$E^{*}:$ the set E without its zer $\bigwedge^{3} 0$, i.e. $E^{*} \stackrel{\text { def }}{=} E \backslash\{0\}$,
E_{+}: the subset of non-negative ${ }^{3}$ elements of E, i.e. $E_{+} \xlongequal{\text { def }} E \cap[0,+\infty)$,
E_{-}: the subset of non-positive ${ }^{[3}$ elements of E, i.e. $E_{-} \stackrel{\text { def }}{=} E \cap(-\infty, 0]$,
$E^{c}:$ complementary set of E (when this is not ambiguous), e.g. in $\{1,2,3,4,5\},\{1,2,5\}^{c}=\{3,4\}$,
$\delta E:$ frontier of the set E, e.g. $\delta \mathcal{B}_{2}(0,1)=\mathcal{C}_{2}(0,1)$ (ball and sphere being centered at 0 and of radii 1 , in 2D),
E° : interior of the set E, i.e. $E^{\circ} \stackrel{\text { def }}{=} E \backslash \delta E$ (also written $\operatorname{int}(E)$),
\bar{E} : cloture of E, i.e. $\bar{E} \stackrel{\text { def }}{=}\left\{\lim _{n \longrightarrow+\infty} u_{n},\left(u_{n}\right)_{n \in \mathbb{N}} \in E^{\mathbb{N}}\right.$ being convergent $\}$,
$d(x, y)$: distance between two points x and y, usually $d(x, y)=|x-y|$,
$d(x, A)$: distance from the point x to the subset $A\left(\stackrel{\text { def }}{=} \inf _{a \in A}|x-a|\right)$,
$d(A, B)$: distance from two subsets A and $B\left(\stackrel{\text { def }}{=} \inf _{(a, b) \in A \times B}|a-b|\right)$,
$A+B:$ sum of two subsets A and $B(=\{a+b:(a, b) \in A \times B\})$,
$A-B:$ subtraction of two subsets A and $B(=\{a-b:(a, b) \in A \times B\})$,
$\operatorname{diam}(A)$: diameter of a subset A, i.e. $\operatorname{diam}(A) \stackrel{\text { def }}{=} \sup \left\{|x-y|,(x, y) \in A^{2}\right\}$,
(MA102)
$\chi_{A}:$ characteristic function for $A \subset E$, i.e. $E \longrightarrow\{0,1\}, x \mapsto 1$ if $x \in A, 0$ otherwise,
$\operatorname{dim}(E):$ dimension of a space $E\left(\operatorname{dim}_{\mathbb{K}}(A)\right]:$ dimension of a subset $A \subset E$, as a \mathbb{K}-vectorial-space $)$.
(MA102)

Orders and relationships

$<$: (strictly) lower than, e.g. $1<\sqrt{2}$,
\leqslant : lower or equal than, e.g. $1 \leqslant 1$,
$>$: (strictly) greater than, e.g. $1>\mathrm{e}^{-1}$,
\geqslant : greater or equal than, e.g. $2 \geqslant 2$,
\equiv : "same meaning", or semantical identity for formulas : $\neg(\neg P) \equiv P$,
\simeq : similar, e.g. for numerical approximations : $\pi \simeq 3.14$ or $\sqrt{2} \simeq 1.4142$,
\sim : numerically equivalent, for a limit, e.g. $\frac{\sin (7 x)}{x} \underset{x \longrightarrow 0, x \neq 0}{\sim} 7$.

[^2]
Other binary operators

○ : composition of functions, if $f: E \longrightarrow F, g: F \longrightarrow G$, then $f \circ g: E \longrightarrow G, x \mapsto f(g(x))$,
$\mathbf{x . y}$: inner product, also written $\langle\mathbf{x}, \mathbf{y}\rangle$, e.g. $[1 ; 2 ; 3] \cdot[4 ; 5 ; 6]=1 * 4+2 * 5+3 * 6=32$,
$\mathbf{x} \times \mathbf{y}:$ vectorial product, e.g. $[1 ; 2 ; 3] \times[4 ; 5 ; 6]=[-3 ; 6 ;-6]$,
| : divisibility (for integers, or polynomials), e.g. 5 | 2015,
ł: non-divisibility (for integers, or polynomials), e.g. $2014 \nmid 2015$,
. $\bmod .:$ used to write equality modulo another number, e.g. $17=2 \bmod 5$.

Usual unary operators

$\mathcal{R} e$: real part for a complex number, i.e. $\mathcal{R} e(a+i b)=a$, also written as $\mathcal{R} \operatorname{eal}(z)$,
$\mathcal{I} m$: imaginary part for a complex number, i.e. $\operatorname{IIm}(a+i b)=b$, also written as $\operatorname{Imag}(z)$,
sup : best upper-bound of a set (smaller upper-bound), warning: when it exists,
inf : best lower-bound of a set (bigger lower-bound), warning: when it exists,
\lim : limit, usually we specify $\lim _{x \rightarrow 0}$ to say "when x tends to 0 ",
$\lim _{x \longrightarrow 0, x \neq 0}$: a special casf 4^{4}, which specifies that " x tends to 0 while being always non-zero",
\arg : one argument (for a complex number), e.g. $\arg \left(\mathrm{e}^{i \pi / 4}\right)=\pi / 4$ but $\pi / 4+2 \pi$ is also a valid argument.
Warning: the formula $\arg (x+i y)=\arctan \frac{y}{x}$ is not always true, (only true if $x>0$ in fact).

Notations for the limits

$\longrightarrow:$ for a limit : $n \longrightarrow+\infty$ means that " n tends to $+\infty$ ",
$x \longrightarrow a^{+}:$means that x tends to a by being greater than $a(i . e . \quad x>a, x \longrightarrow a)$,
$x \longrightarrow a^{-}:$means that x tends to a by being lower than $a($ i.e. $x<a, x \longrightarrow a)$,
$f\left(x^{+}\right)$: limit of f at x for smaller values, i.e. $f\left(x^{+}\right) \stackrel{\text { def }}{=} \lim _{y \longrightarrow x^{+}} f(y)$,
$f\left(x^{-}\right)$: limit of f at x for bigger values, i.e. $f\left(x^{-}\right) \stackrel{\text { def }}{=} \lim _{y \longrightarrow x^{-}} f(y)$.

Other notations

\bar{z} : conjugate of a complex number, i.e. $\overline{a+i b} \stackrel{\text { def }}{=} a-i b$,
$|z|$: absolute value of a number (real or complex), e.g. $|a+i b| \stackrel{\text { def }}{=} \sqrt{a^{2}+b^{2}}$ or $|-2.73|=2.73$,
\mathbf{x}, \mathbf{y} : are for the vectors x, y. Sometimes also written as \vec{u}, \vec{v} etc,
$|\mathbf{x}|:$ norm of the vector \mathbf{x}, e.g. $|[1 ; 2 ; 3]|=\sqrt{1^{2}+2^{2}+3^{2}} \simeq 3.741$,
$\|\cdot\|:$ unified notation for a norm. There is also the p norm: $\|\cdot\|_{p}$, and the infinite norm $\left.\|\cdot\|_{+\infty}\right]$,
$\left(u_{n}\right)_{n \in \mathbb{N}}$: the sequence of $u_{n} \in E$, i.e. the function $u: \mathbb{N} \longrightarrow E, n \mapsto u_{n}$. A (bad) shortcut is $\left\{u_{n}\right\}$.

[^3]Mahindra École Centrale, 2014-15

Derivatives and differential calculus

$f^{\prime}:$ derivative 5^{5} of f, e.g. $\ln ^{\prime}: x \mapsto \frac{1}{x}, \forall x>0$. May be written \dot{x}, but only in physics,
$f^{\prime \prime}$: second derivative of $f($ or \ddot{x} in physics $)$), $f^{\prime \prime \prime}$ third derivative, $\ldots, f^{(n)} n^{\text {th }}$ derivative for $n \geqslant 0$,
$f^{n}: n^{\text {th }}$ power of f for $n \geqslant 0$ (be careful, it is not a derivative $f^{(n)}$!),
$\frac{\partial f}{\partial x_{j}}$: partial derivative of f for the $j^{\text {th }}$ coordinate, also written as $f_{x_{j}} . e . g$. for $f(x, y)$, we have f_{x} and f_{y},
$\nabla f:$ gradient of f (also written $\operatorname{grad} f$ or $\overrightarrow{g r a d} f$),
$\operatorname{div} f$: divergence of f.

Integrals

$\int_{a}^{b} f(x) \mathrm{d} x$: integral of the function $f: x \mapsto f(x)$ on (a, b),
$\int f$: integral of the function f on its domain (when it is not ambiguous), or a primitive of f (i.e. an antiderivative),
$\oint f(x) \mathrm{d} x$: curvilinear integral of f,
$\iint_{(a, b) \times(c, d)} f(x, y) \mathrm{d} x \mathrm{~d} y$: double integral of the 2-variables function $f:(a, b) \times(c, d),(x, y) \mapsto f(x, y)$.

Some rare notation for functions spaces

$\mathcal{F}(E, F)$: functions from E to F, i.e. F^{E},
$\mathcal{C}(E, F)$: continuous functions from E to F,
$\mathcal{C}(E)$: continuous functions from E to E,
$\mathcal{C}_{b}(E, F)$: bounded and continuous functions from E to F,
$\mathcal{C}^{k}(E, F): k$-time differentiable functions, of $k^{\text {th }}$ derivatives being continuous, from E to $F(k \in \mathbb{N})$,
$\mathcal{C}^{\infty}(E, F)$: infinitely differentiable functions, from E to F,
$\mathcal{L}(E, F)$: linear applications from E to F,
(MA102)
$\mathcal{L}(E)$: linear applications from E to E,
$\mathcal{L}_{c}(E, F)$: continuous and linear applications from E to F.

Want more? A list of mathematical symbols : http://en.wikipedia.org/wiki/Table_of_mathematical_symbols, on Wikipédia, and some others lists on mathematical notations, on Wikipédia.

[^4]
[^0]: ${ }^{1}$ It is latin.

[^1]: ${ }^{2}$ If you are curious, this page on Wikipédia explains how and why we have to limit the expressiveness of this way to define set, otherwise we can conclude paradoxes, as the famous Russel's paradox

[^2]: ${ }^{3}$ When this as a meaning.

[^3]: ${ }^{4}$ It can be adapted to other situations, e.g. $\lim _{(h, k) \longrightarrow(0,0),(h, k) \neq(0,0)}$ for a limit when the vector (h, k) tends to $(0,0)$ but is never zero.

[^4]: ${ }^{5}$ If it exists!

 Mahindra École Centrale, 2014-15

