NB: This document sums up as much symbols, notations and conventions used for the Maths 101 course as possible. If something is missing, please [tell us].

Shortcuts

i.e. : *id est* “that is”,

e.g.: *exempli gratia* “for example” (does not come from “example given”).

Basic notations for functions

\(f(x) \): the *value* of the function \(f \) at the point \(x \),

\(f(A) \): the *image set* of \(A \) by \(f \), i.e. \(\{ f(x) : x \in A \} \),

\(f(B) \): the *pre-image set* of \(B \) by \(f \), i.e. \(\{ y \in B : \exists x \in A / f(x) = y \} \),

\(\mapsto \): to specify the domain for a function, e.g. \(\sin : \mathbb{R} \mapsto \mathbb{R} \),

\(f |_A \): the restriction of the function \(f : E \mapsto F \) to the subset \(A \subset E \).

Shortcuts for sums and products

\(\sum_{k=1}^{n} f(k) \): sum \(f(1) + f(2) + \cdots + f(n-1) + f(n) \) for \(n \geq 1 \),

\(\prod_{k=1}^{n} g(k) \): product \(g(1) \times g(2) \times \cdots \times g(n-1) \times g(n) \) for \(n \geq 1 \),

\(\bigotimes_{k=1}^{n} E_k \): Cartesian product for spaces \(E_1 \times E_2 \times \cdots \times E_{n-1} \times E_n \) for \(n \geq 1 \),

\(\bigoplus_{k=1}^{n} E_k \): direct sum for spaces \(E_1 \oplus E_2 \oplus \cdots \oplus E_{n-1} \oplus E_n \) for \(n \geq 1 \).

Logical binary predicates

\(\mathsf{def} \Rightarrow \): implies, e.g. \((x > 0) \Rightarrow (x \geq 0) \),

\(\Leftrightarrow \): is equivalent to, i.e. implies and is implied by,

\(\neg \): logical negation, e.g. \(\neg(x > 0) \equiv x \leq 0 \).

Binary predicates for set

\(\in \): belongs to, e.g. \(n \in \mathbb{N} \),

\(\notin \): do not belong to, e.g. \(-1 \notin \mathbb{R}^+ \),

\(\subseteq \): is included in, e.g. \(\mathbb{N} \subseteq \mathbb{R} \),

\(\supseteq \): contains, e.g. \(\mathbb{Z} \supseteq \{-1, 0, 1\} \),

\(\subseteq \): to precise that inclusion can be an equality, at the opposite of \(\supseteq \) which exclude the equality,

\(\setminus \): difference of two sets, e.g. \(\mathbb{R} \setminus \mathbb{R}^- = \mathbb{R}^+ \),

\(\cap \): intersection of two sets (also \(\bigcap \)), e.g. \(\mathbb{C} \cap \mathbb{Z} = \mathbb{Z} \),

\(\cup \): union of two sets (also \(\bigcup \)), e.g. \(\{0\} \cup \mathbb{N}^* = \mathbb{N} \),

\(\sqcup \): disjunct union of two sets (also \(\biguplus \)), e.g. \(\mathbb{R}^- \sqcup \mathbb{R}^+ \) (also \(\sqcup \) or \(\biguplus \)),

\(E_1 \times E_2 \): Cartesian product of two sets \(E_1 \) and \(E_2 \), i.e. \(\{(x, y) : x \in E_1, y \in E_2\} \),

\(E_1 \uplus E_n \): direct sum of two sets \(E_1, E_2 \subset E \), i.e. \(\{x + y : x \in E_1, y \in E_2\} \), where \(E_1 \cap E_2 = \{0_E\} \).

\(^1 \)It is latin.

Please, report any issue to MA101@crans.org
Usual constants and functions

\pi : (pi), usually defined by the quotient of any circle perimeter by its diameter,

\e : base of the exponential function, i.e. \(\e^1 = \exp(1) \),

\(+\infty\) : positive infinite, \(-\infty\) negative infinite, \(\infty\) infinite,

\text{sign} : sign function, i.e. \(\text{sign} : \mathbb{R} \dashrightarrow \mathbb{R}, 0 \mapsto 0, x \mapsto 1 \) if \(x > 0 \), \(-1 \) if \(x < 0 \),

\exp : exponential function, i.e. \(\exp : \mathbb{R} \dashrightarrow \mathbb{R}, x \mapsto \exp(x) = \e^x \),

\ln : Neperian logarithm function, i.e. \(\ln : \mathbb{R}^+ \dashrightarrow \mathbb{R}, x \mapsto \ln(x) \),

cos : cosine, \sin : sinus, \tan : tangent (\(\mathbb{R} \dashrightarrow \mathbb{R} \)),

\text{arccos} : arc cosine, \text{arcsin} : arc sinus, \text{arctan} : arc tangent (reciprocal),

cosh : hyperbolic cosine, \sinh : hyperbolic sinus, \tanh : hyperbolic tangent (\(\mathbb{R} \dashrightarrow \mathbb{R} \)),

\text{arcosh} : arc hyperbolic cosine, \text{arcsinh} : arc hyperbolic sinus, \text{arctanh} : arc hyperbolic tangent (reciprocal),

det : determinant, com : comatrix,

\(\det \), \(\text{com} \),

\E : integer part (lower), i.e. \(E(x) \coloneqq \max\{n \in \mathbb{Z}, n \leq x\} \),

floor : lower integer round, i.e. \(\text{floor}(x) \coloneqq \lfloor x \rfloor = E(x) \),

ceil : upper integer round, i.e. \(\text{ceil}(x) \coloneqq \lceil x \rceil = E(x) + 1 \),

\(\delta_{i,j} \) : KRONECKER's symbol, \(\delta_{i,j} : (k,l) \mapsto 1 \) if \(k = i \) and \(l = j \), \(0 \) otherwise,

\gamma : usually, EULER's constant,

\(\Gamma(x) \) : usually, EULER's Gamma function,

\(I_n \) : identity matrix of size \(n \geq 0 \).

Usual sets

\emptyset : the empty set (it is unique, even if included in any set),

\{ x : P(x) \} : set of all elements \(x \) satisfying verifying a certain property \({}^2 P(x) \), e.g. \(\{ x \in \mathbb{R} : x \geq 0 \} = \mathbb{R}_+ \),

\mathbb{N} : non-negative natural numbers, \(\mathbb{N} = \{0,1,\ldots,n-1,n,n+1,\ldots\} \),

\mathbb{Z} : (ring of the) integer numbers, \(\mathbb{Z} = \{\ldots,n-1,-n,-n+1,\ldots,-1,0,1,\ldots,n-1,n,n+1,\ldots\} \),

\mathbb{Q} : (field of the) rational numbers, \(\mathbb{Q} \coloneqq \left\{ \frac{p}{q} \mid (p,q) \in \mathbb{Z} \times \mathbb{N}^* \text{ being convergeant} \right\} \),

\mathbb{R} : (field of the) real numbers, \(\mathbb{R} \coloneqq \left\{ \lim_{n \to \infty} r_n, (r_n)\in\mathbb{N} \text{ being convergeant} \right\} \),

- \([a,b] \) : segment (close interval), i.e. \([a,b] \coloneqq \{ x \in \mathbb{R} : a \leq x \leq b \} \),

- \((a,b)\) : open interval, i.e. \((a,b) \coloneqq \{ x \in \mathbb{R} : a < x < b \} \),

- \([a,b)\) : half-open on the right interval, i.e. \([a,b) \coloneqq \{ x \in \mathbb{R} : a \leq x < b \} \),

- \((a,b]\) : half-open on the left interval, i.e. \((a,b] \coloneqq \{ x \in \mathbb{R} : a < x \leq b \} \),

\mathbb{C} : (field of the) complex numbers, \(\mathbb{C} \coloneqq \{ a + ib : a,b \in \mathbb{R} \} \),

\mathbb{K} : any (commutative) field, usually understood as “\(\mathbb{R} \) or \(\mathbb{C} \)”,

\(E^n \) : product set, set of the \(n \)-tuples of \(E \), i.e. \(\{ (x_1,\ldots,x_n) : \forall 1 \leq i \leq n, x_i \in E \} \), e.g. \(\mathbb{R}^2 \cong \mathbb{C} \),

\(M_{n,m}(A) \) : set of \(n \times m \)-sized matrices \((n,m \in \mathbb{N}) \), also written as \(M_{n,m}(A) \),

\(^2\)If you are curious, this page on Wikipédia explains how and why we have to limit the expressiveness of this way to define set.
Operators for sets

Card : cardinal of a set, i.e. number of its elements, also written \(\text{Card}(E) \overset{\text{def}}{=} |E| \overset{\text{def}}{=} \#E \),

\(\mathcal{P}(E) : \) set of subsets of \(E \) (also written \(2^E \)),

\(E^* : \) the set \(E \) without its zero \(\overset{\text{def}}{=} \{0\} \), i.e. \(E^* \overset{\text{def}}{=} E \setminus \{0\} \),

\(E_+ : \) the subset of non-negative elements of \(E \), i.e. \(E_+ \overset{\text{def}}{=} E \cap [0, +\infty) \),

\(E_- : \) the subset of non-positive elements of \(E \), i.e. \(E_- \overset{\text{def}}{=} E \cap (-\infty, 0] \),

\(E^c : \) complementary set of \(E \) (when this is not ambiguous),

\(\delta E : \) frontier of the set \(E \), e.g. \(\delta B_2(0, 1) = C_2(0, 1) \) (ball and sphere being centered at 0 and of radii 1, in 2D),

\(E^{\circ} : \) interior of the set \(E \), i.e. \(E^{\circ} \overset{\text{def}}{=} E \setminus \delta E \) (also written \(\text{int}(E) \)),

\(\overline{E} : \) clouture of \(E \), i.e. \(\overline{E} \overset{\text{def}}{=} \left\{ \lim_{n \to \infty} u_n \mid (u_n)_{n \in \mathbb{N}} \text{ being convergent} \right\} \),

\(d(x, y) : \) distance between two points \(x \) and \(y \), usually \(d(x, y) = |x - y| \),

\(d(x, A) : \) distance from the point \(x \) to the subset \(A \) (\(\overset{\text{def}}{=} \inf_{a \in A} |x - a| \)),

\(d(A, B) : \) distance from two subsets \(A \) and \(B \) (\(\overset{\text{def}}{=} \inf_{(a, b) \in A \times B} |a - b| \)),

\(A + B : \) sum of two subsets \(A \) and \(B \) (\(\overset{\text{def}}{=} \{a + b : (a, b) \in A \times B\} \)),

\(A - B : \) subtraction of two subsets \(A \) and \(B \) (\(\overset{\text{def}}{=} \{a - b : (a, b) \in A \times B\} \)),

\(\text{diam}(A) : \) diameter of a subset \(A \), i.e. \(\text{diam}(A) \overset{\text{def}}{=} \sup \{ |x - y|, (x, y) \in A^2 \} \),

\(\chi_A : \) characteristic function for \(A \subset E \), i.e. \(E \mapsto [0, 1], x \mapsto 1 \) if \(x \in A \), 0 otherwise,

\(\text{dim}(E) : \) dimension of a space \(E \), \(\text{dim}_K(A) : \) dimension of a subset \(A \subset E \), has a \(K \)-vectorial-space.

Orders and relationships

\(< : \) (strictly) lower than, e.g. \(1 < \sqrt{2} \),

\(\leq : \) lower or equal than, e.g. \(1 \leq 1 \),

\(> : \) (strictly) greater than, e.g. \(1 > e^{-1} \),

\(\geq : \) greater or equal than, e.g. \(2 \geq 2 \),

\(= : \) “same meaning”, or semantical identity for formulas : \(\neg(\neg P) = P \),

\(\simeq : \) similar, e.g. for numerical approximations : \(\pi \simeq 3.14 \),

\(\sim : \) numerically equivalent, for a limit, e.g. \(\frac{\sin(7x)}{x} \xrightarrow{x \to 0, x/\pi \to 0} 7 \).

Other binary operators

\(\circ : \) composition of functions, if \(f : E \leftrightarrow F, g : F \leftrightarrow G \), then \(f \circ g : E \leftrightarrow G, x \mapsto f(g(x)) \),

\(\cdot, \cdot : \) inner product, also written \(\langle \cdot, \cdot \rangle \), e.g. \([1; 2; 3] \cdot [4; 5; 6] = 1 \cdot 4 + 2 \cdot 5 + 3 \cdot 6 = 32 \),

\(\times \times : \) vectorial product, e.g. \([1; 2; 3] \times [4; 5; 6] = [-3; 6; -6] \),

\(| : \) divisibility (for integers, or polynomials), e.g. \(1007 \div 2014 \),

\(\not| : \) non-divisibility (for integers, or polynomials), e.g. \(2013 \not| 2014 \),

\(\mod : \) used to write equality modulo another number, e.g. \(17 = 2 \mod 5 \).
Usual unary operators

\(\mathcal{R} \) : real part for a complex number, i.e. \(\mathcal{R}(a + ib) = a \),
\(\mathcal{I} \) : imaginary part for a complex number, i.e. \(\mathcal{I}(a + ib) = b \),
sup : best upper-bound of a set (smaller upper-bound),
inf : best lower-bound of a set (bigger lower-bound),
lim : limit, usually by precising \(\lim_{x \to 0} \) to say “when \(x \) tends to 0”,
lim sup : upper limit (also written \(\lim \), or sometimes \(\lim \)),
lim inf : lower limit (also written \(\lim \), or sometimes \(\lim \)),
arg : one argument (for a complex number), e.g. \(\arg \) \(p \) is also a valid argument.

Notations for the limits
\(\xrightarrow[]{} \) : for a limit : \(\xrightarrow[]{\infty} \) means that “\(x \) tends to \(\infty \)”, \(\xrightarrow[]{\infty} \) : means that \(x \) tends to \(\infty \) by being greater than \(\infty \) (i.e. \(\infty \)), \(\xrightarrow[]{\infty} \) : means that \(x \) tends to \(\infty \) by being lower than \(\infty \) (i.e. \(\infty \)),
\(p \xrightarrow[]{} q \) : limit of \(x \) at \(\infty \) for smaller values, i.e. \(p \xrightarrow[]{} q \) \(\overset{\text{def}}{=} \lim_{x \to \infty} f(y) \),
\(p \xrightarrow[]{} q \) : limit of \(x \) at \(\infty \) for bigger values, i.e. \(p \xrightarrow[]{} q \) \(\overset{\text{def}}{=} \lim_{x \to \infty} f(y) \).

Other notations
\(g^+ \) : non-negative part of \(g \), i.e. \(g^+ \overset{\text{def}}{=} \max\{g(x), 0\} \),
\(g^- \) : non-positive part of \(g \), i.e. \(g^- \overset{\text{def}}{=} \min\{g(x), 0\} \),
\(\overline{z} \) : conjugate of a complex number, i.e. \(\overline{a + ib} \overset{\text{def}}{=} a - ib \),
|\(z \)| : absolute value of a number (real or complex), e.g. \(|a + ib| \overset{\text{def}}{=} \sqrt{a^2 + b^2} \) or \(|2.73| = 2.73 \),
\(x, y \) : vector \(\vec{x}, \vec{y} \) etc.,
|\(x \)| : norm of the vector \(x \), e.g. \(|[1; 2; 3]| = \sqrt{1^2 + 2^2 + 3^2} \approx 3.741 \),
\(||.|| \) : unified notation for a norm, \(||.||_p \) : norme \(p \), \(||.||_{\infty} \) : infinite norm,
\((u_n)_{n \in \mathbb{N}} \) : the sequence of \(u_n \in E \), i.e. the function \(u : \mathbb{N} \xrightarrow[]{} E, n \mapsto u_n \).

Derivatives and differential calculus
\(f' \) : derivative of \(f \), e.g. \(\ln'(x) = \frac{1}{x} \), \(\forall x > 0 \). May be written \(x \) (in physics),
\(f'' \) : second derivative of \(f \) (or \(\dot{x} \) in physics), \(f''' \) third derivative, \(\ldots \), \(f^{(n)} \) \(n^{th} \) derivative for \(n \geq 0 \),
\(f^n \) : \(n^{th} \) power of \(f \) for \(n \geq 0 \) (be careful, it is not a derivative \(f^{(n)} \)),
\(D_j f \) : partial derivative of \(f \) for the \(j^{th} \) coordinate,
\(\nabla f \) : gradient of \(f \) (also written \(\text{Grad} f \)),
\(\text{Div } f \) : divergence of \(f \).
Integrals
\[
\int_a^b f(x)\,dx \quad \text{integral of the function } f : x \mapsto f(x) \text{ on } (a,b),
\]
\[
\int f \quad \text{integral of the function } f \text{ on its domain (when it is not ambiguous)},
\]
\[
\oint f(x)\,dx \quad \text{curvilinear integral of } f,
\]
\[
\iint_{(a,b)\times(c,d)} f(x,y)\,dxdy \quad \text{double integral of the 2-variables function } f : (a,b) \times (c,d) \mapsto f(x,y).
\]

Usual functions spaces
\[
\mathcal{F}(E,F) \quad \text{functions from } E \text{ to } F, \text{ i.e. } F^E,
\]
\[
\mathcal{C}(E,F) \quad \text{continuous functions from } E \text{ to } F,
\]
\[
\mathcal{C}(E) \quad \text{continuous functions from } E \text{ to } E,
\]
\[
\mathcal{C}_b(E,F) \quad \text{bounded and continuous functions from } E \text{ to } F,
\]
\[
\mathcal{C}^k(E,F) \quad k\text{-time differentiable functions, of } k^{\text{th}} \text{ derivatives being continuous, from } E \text{ to } F \text{ (} k \in \mathbb{N} \text{)},
\]
\[
\mathcal{C}^\infty(E,F) \quad \text{infinitely differentiable functions, from } E \text{ to } F,
\]
\[
\mathcal{L}(E,F) \quad \text{linear applications from } E \text{ to } F,
\]
\[
\mathcal{L}(E) \quad \text{linear applications from } E \text{ to } E.
\]
\[
\mathcal{L}_c(E,F) \quad \text{continuous and linear applications from } E \text{ to } F,
\]

Want more? A list of mathematical symbols: en.wikipedia.org/wiki/Table_of_mathematical_symbols on Wikipédia, and some others lists on mathematical notations, on Wikipédia.