NB : This document sums up as much symbols, notations and conventions used for the Maths 101 course as possible. If something is missing, please tell us.

Shortcuts

i.e. : id es ${ }^{17}$ "that is",
e.g. : exempli gratid ${ }^{1}$, "for example" (does not come from "example given").

Basic notations for functions

$f(x)$: the value of the function f at the point x,
$f(A)$: the image set of A by f, i.e. $\{f(x): x \in A\}$,
$f(B)$: the pre-image set of B by f, i.e. $\{y \in B: \exists x \in A / f(x)=y\}$,
\longleftrightarrow : to specify the domain for a function, e.g. $\sin : \mathbb{R} \longleftrightarrow \mathbb{R}$,
$f_{\mid A}:$ the restriction of the function $f: E \longleftrightarrow F$ to the subset $A \subset E$.

Shortcuts for sums and products

$\sum_{k=1}^{n} f(k): \operatorname{sum} f(1)+f(2)+\cdots+f(n-1)+f(n)$ for $n \geqslant 1$,
$\prod_{k=1}^{n} g(k):$ product $g(1) \times g(2) \times \cdots \times g(n-1) \times g(n)$ for $n \geqslant 1$,
$\stackrel{n}{\chi} E_{k}:$ Cartesian product for spaces : $E_{1} \times E_{2} \times \cdots \times E_{n-1} \times E_{n}$ for $n \geqslant 1$,
$k=1$
$\bigoplus_{k=1}^{n} E_{k}$: direct sum for spaces : $E_{1} \oplus E_{2} \oplus \cdots \oplus E_{n-1} \oplus E_{n}$ for $n \geqslant 1$.

Logical binary predicates

$\stackrel{\text { def }}{=}>$: implies, e.g. $\quad(x>0) \stackrel{\text { def }}{=}>(x \geqslant 0)$,
\Leftrightarrow : is equivalent to, i.e. implies and is implied by,
\neg : logical negation, e.g. $\neg(\omega>0) \equiv \omega \leqslant 0$.

Binary predicates for set

$\in:$ belongs to, e.g. $n \in \mathbb{N}$,
$\notin:$ do not belong to, e.g. $-1 \notin \mathbb{R}_{+}$,
$\subset:$ is included in, e.g. $\mathbb{N} \subset \mathbb{R}$,
$\supset:$ contains, e.g. $\mathbb{Z} \supset\{-1,0,1\}$,
$\subseteq:$ to precise that inclusion can be an equality, at the opposite of \subsetneq which exclude the equality,
$\backslash:$ difference of two sets, e.g. $\mathbb{R} \backslash \mathbb{R}_{-}=\mathbb{R}_{+}^{*}$,
\cap : intersection of two sets (also \bigcap), e.g. $\mathbb{C} \cap \mathbb{Z}=\mathbb{Z}$,
$\cup:$ union of two sets (also \bigcup), e.g. $\quad\{0\} \cup \mathbb{N}^{*}=\mathbb{N}$,
\uplus : disjunct union of two sets (also \biguplus), e.g. $\mathbb{R}_{-}^{*} \uplus \mathbb{R}_{+}^{*}$ (also \sqcup or \bigsqcup),
$E_{1} \times E_{2}:$ Cartesian product of two sets E_{1} and E_{2}, i.e. $\left\{(x, y): x \in E_{1}, y \in E_{2}\right\}$,
$E_{1} \oplus E_{n}:$ direct sum of two sets $E_{1}, E_{2} \subset E$, i.e. $\left\{x+y: x \in E_{1}, y \in E_{2}\right\}$, where $E_{1} \cap E_{2}=\left\{0_{E}\right\}$.

[^0]
Usual constants and functions

$\pi:(\mathrm{pi})$, usually defined by the quotient of any circle perimeter by its diameter,
e : base of the exponential function, i.e. $\quad \stackrel{\text { def }}{=} e^{1}=\exp (1)$,
$+\infty$: positive infinite, $-\infty$ negative infinite, oo infinite,
sign : sign function, i.e. sign : $\mathbb{R} \longleftrightarrow \mathbb{R}, 0 \mapsto 0, x \mapsto 1$ if $x>0,-1$ if $x<0$,
$\exp : \operatorname{exponential}$ function, i.e. $\exp : \mathbb{R} \longleftrightarrow \mathbb{R}, x \mapsto \exp (x)=\mathrm{e}^{x}$,
$\ln :$ Neperian logarithm function, i.e. $\ln : \mathbb{R}_{+}^{*} \longleftrightarrow \mathbb{R}, x \mapsto \ln (x)$,
$\cos :$ cosine, sin : sinus, tan : tangent $(\mathbb{R} \longleftrightarrow \mathbb{R})$,
$\arccos : \operatorname{arc} \operatorname{cosine}, \arcsin :$ arc sinus, arctan : arc tangent (reciprocal),
cosh : hyperbolic cosine, sinh : hyperbolic sinus, tanh : hyperbolic tangent $(\mathbb{R} \longleftrightarrow \mathbb{R})$,
arccosh : arc hyperbolic cosine, arcsinh : arc hyperbolic sinus, arctanh : arc hyperbolic tangent (reciprocal),
det : determinant, com : comatrix,
$\mathrm{E}:$ integer part (lower), i.e. $\mathrm{E}(x) \stackrel{\text { def }}{=} \max \{n \in \mathbb{Z}, n \leqslant x\}$,
floor : lower integer round, i.e. floor $(x) \stackrel{\text { def }}{=}\lfloor x\rfloor=\mathrm{E}(x)$,
ceil : upper integer round, i.e. $\quad \operatorname{ceil}(x) \stackrel{\text { def }}{=}\lceil x\rceil=\mathrm{E}(x)+1$,
$\delta_{i, j}:$ Kronecker's symbol, $\delta_{i, j}:(k, l) \mapsto 1$ if $k=i$ and $l=j, \mapsto 0$ otherwise,
γ : usually, Euler's constant,
$\Gamma(x)$: usually, Euler's Gamma function,
I_{n} : identity matrix of size $n \geqslant 0$.

Usual sets

\varnothing : the empty set (it is unique, even if included in any set),
$\{x: P(x)\}$: set of all elements x satisfying verifying a certain property $\}^{2} P(x)$, e.g. $\{x \in \mathbb{R}: x \geqslant 0\}=\mathbb{R}_{+}$,
\mathbb{N} : non-negative natural numbers, $\mathbb{N}=\{0,1, \ldots, n-1, n, n+1, \ldots\}$,
$\mathbb{Z}:($ ring of the) integer numbers, $\mathbb{Z}=\{\ldots,-n-1,-n,-n+1, \ldots,-1,0,1, \ldots, n-1, n, n+1, \ldots\}$,
$\mathbb{Q}:\left(\right.$ field of the) rational numbers, $\mathbb{Q} \stackrel{\text { def }}{=}\left\{\frac{p}{q},(p, q) \in \mathbb{Z} \times \mathbb{N}^{*}\right\}$,
$\mathbb{R}:\left(\right.$ field of the) real numbers, $\mathbb{R} \stackrel{\text { def }}{=}\left\{\lim _{n \longleftrightarrow o o} r_{n},\left(r_{n}\right)_{n \in \mathbb{N}} \in \mathbb{Q}^{\mathbb{N}}\right.$ being convergeant $\}$,

- $[a, b]$: segment (close interval), i.e. $[a, b] \stackrel{\text { def }}{=}\{x \in \mathbb{R}: a \leqslant x \leqslant b\}$,
- (a, b) : open interval, i.e. $(a, b) \stackrel{\text { def }}{=}\{x \in \mathbb{R}: a<x<b\}$,
- $[a, b)$: half-open on the right interval, i.e. $[a, b) \stackrel{\text { def }}{=}\{x \in \mathbb{R}: a \leqslant x<b\}$,
- $(a, b]$: half-open on the left interval, i.e. $(a, b] \stackrel{\text { def }}{=}\{x \in \mathbb{R}: a<x \leqslant b\}$,
$\mathbb{C}:($ field of the) complex numbers, $\mathbb{C} \stackrel{\text { def }}{=}\{a+i b: a, b \in \mathbb{R}\}$,
\mathbb{K} : any (commutative) field, usually understood as " \mathbb{R} or \mathbb{C} ",
$E^{n}:$ product set, set of the n-tuples of E, i.e. $\left\{\left(x_{1}, \ldots, x_{n}\right): \forall 1 \leqslant i \leqslant n, x_{i} \in E\right\}$, e.g. $\mathbb{R}^{2} \simeq \mathbb{C}$,
$\mathbb{M}_{n, m}(A):$ set of $n \times m$-sized matrices $(n, m \in \mathbb{N})$, also written as $M_{n, m}(A)$,

[^1]
Operators for sets

Card : cardinal of a set, i.e. number of its elements, also written $\operatorname{Card}(E) \stackrel{\text { def }}{=}|E| \stackrel{\text { def }}{=} \# E$,
$\mathcal{P}(E)$: set of subsets of E (also written 2^{E}),
E^{*} : the set E without its zer $\bigwedge^{3} 0$, i.e. $E^{*} \stackrel{\text { def }}{=} E \backslash\{0\}$,
E_{+}: the subset of non-negative ${ }^{3}$ elements of E, i.e. $E_{+} \stackrel{\text { def }}{=} E \cap[0,+\infty)$,
E_{-}: the subset of non-positive ${ }^{[3}$ elements of E, i.e. $E_{-} \stackrel{\text { def }}{=} E \cap(-\infty, 0]$,
E^{c} : complementary set of E (when this is not ambiguous),
$\delta E:$ frontier of the set E, e.g. $\delta \mathcal{B}_{2}(0,1)=\mathcal{C}_{2}(0,1)$ (ball and sphere being centered at 0 and of radii 1 , in 2D),
$E^{\circ}:$ interior of the set E, i.e. $\quad E^{\circ} \stackrel{\text { def }}{=} E \backslash \delta E$ (also written $\operatorname{int}(E)$),
\bar{E} : cloture of E, i.e. $\bar{E} \stackrel{\text { def }}{=}\left\{\lim _{n \longleftrightarrow+\infty} u_{n},\left(u_{n}\right)_{n \in \mathbb{N}} \in E^{\mathbb{N}}\right.$ being convergent $\}$,
$d(x, y)$: distance between two points x and y, usually $d(x, y)=|x-y|$,
$d(x, A)$: distance from the point x to the subset $A\left(\stackrel{\text { def }}{=} \inf _{a \in A}|x-a|\right)$,
$d(A, B):$ distance from two subsets A and $B\left(\stackrel{\text { def }}{=} \inf _{(a, b) \in A \times B}|a-b|\right)$,
$A+B:$ sum of two subsets A and $B(=\{a+b:(a, b) \in A \times B\})$,
$A-B:$ subtraction of two subsets A and $B(=\{a-b:(a, b) \in A \times B\})$,
$\operatorname{diam}(A):$ diameter of a subset A, i.e. $\operatorname{diam}(A) \stackrel{\text { def }}{=} \sup \left\{|x-y|,(x, y) \in A^{2}\right\}$,
$\chi_{A}:$ characteristic function for $A \subset E$, i.e. $E \longleftrightarrow\{0,1\}, x \mapsto 1$ if $x \in A, 0$ otherwise,
$\operatorname{dim}(E):$ dimension of a space $\left.E, \operatorname{dim}_{\mathbb{K}}(A)\right]: \operatorname{dimension}$ of a subset $A \subset E$, has a \mathbb{K}-vectorial-space.

Orders and relationships

$<$: (strictly) lower than, e.g. $1<\sqrt{2}$,
\leqslant : lower or equal than, e.g. $1 \leqslant 1$,
$>:($ strictly $)$ greater than, e.g. $1>\mathrm{e}^{-1}$,
\geqslant : greater or equal than, e.g. $2 \geqslant 2$,
\equiv : "same meaning", or semantical identity for formulas : $\neg(\neg P) \equiv P$,
\simeq : similar, e.g. for numerical approximations : $\pi \simeq 3.14$,
\sim : numerically equivalent, for a limit, e.g. $\frac{\sin (7 x)}{x} \underset{x \longleftrightarrow 0, x /=0}{\sim} 7$.

Other binary operators

$\circ:$ composition of functions, if $f: E \longleftrightarrow F, g: F \longleftrightarrow G$, then $f \circ g: E \longleftrightarrow G, x \mapsto f(g(x))$,
$\mathbf{x . y}$: inner product, also written $\langle\mathbf{x}, \mathbf{y}\rangle$, e.g. $[1 ; 2 ; 3] .[4 ; 5 ; 6]=1 * 4+2 * 5+3 * 6=32$,
$\mathbf{x} \times \mathbf{y}:$ vectorial product, e.g. $[1 ; 2 ; 3] \times[4 ; 5 ; 6]=[-3 ; 6 ;-6]$,
| : divisibility (for integers, or polynomials), e.g. 1007 | 2014,
×: non-divisibility (for integers, or polynomials), e.g. 2013×2014,
. $\bmod .:$ used to write equality modulo another number, e.g. $17=2 \bmod 5$.

[^2]
Usual unary operators

$\mathcal{R} e$: real part for a complex number, i.e. $\mathcal{R} e(a+i b)=a$,
$\mathcal{I} m$: imaginary part for a complex number, i.e. $\operatorname{I} m(a+i b)=b$,
sup : best upper-bound of a set (smaller upper-bound),
inf : best lower-bound of a set (bigger lower-bound),
lim : limit, usually by precising $\lim _{x \longleftrightarrow 0}$ to say "when x tends to 0 ",
$\lim s u p:$ upper limit (also written $\overline{\lim }$, or sometimes $\left.\lim \right|^{\prime}$),
lim inf : lower limit (also written lim, or sometimes $\lim \mid$,),
\arg : one argument (for a complex number), e.g. $\arg \left(\mathrm{e}^{i \pi / 4}\right)=\pi / 4$ but $\pi / 4+2 \pi$ is also a valid argument.

Notations for the limits

\longleftrightarrow : for a limit : $n \longleftrightarrow+\infty$ means that " n tends to $+\infty$ ",
$x \longleftrightarrow a^{+}:$means that x tends to a by being greater than $a(i . e . \quad x>a, x \longleftrightarrow a)$,
$x \longleftrightarrow a^{-}:$means that x tends to a by being lower than $a($ i.e. $x<a, x \longleftrightarrow a)$,
$f\left(x^{+}\right)$: limit of f at x for smaller values, i.e. $f\left(x^{+}\right) \stackrel{\text { def }}{=} \lim _{y \longleftrightarrow x^{+}} f(y)$,
$f\left(x^{-}\right)$: limit of f at x for bigger values, i.e. $f\left(x^{-}\right) \stackrel{\text { def }}{=} \lim _{y \longleftrightarrow x^{-}} f(y)$.

Other notations

g^{+}: non-negative part of g, i.e. $g^{+} \stackrel{\text { def }}{=} \max \{g(x), 0\}$,
g^{-}: non-positive part of g, i.e. $g^{-} \stackrel{\text { def }}{=} \min \{g(x), 0\}$,
\bar{z} : conjugate of a complex number, i.e. $\overline{a+i b} \xlongequal{\text { def }} a-i b$,
$|z|$: absolute value of a number (real or complex), e.g. $|a+i b| \stackrel{\text { def }}{=} \sqrt{a^{2}+b^{2}}$ or $|-2.73|=2.73$,
$\mathbf{x}, \mathbf{y}:$ vector x, y. Sometimes also written as \vec{u}, \vec{v} etc,
$|\mathbf{x}|:$ norm of the vector \mathbf{x}, e.g. $|[1 ; 2 ; 3]|=\sqrt{1^{2}+2^{2}+3^{2}} \simeq 3.741$,
$\|\cdot\|$: unified notation for a norm, $\|\cdot\|_{p}$: norme $\left.p,\|\cdot\|_{+\infty}\right]$: infinite norm,
$\left(u_{n}\right)_{n \in \mathbb{N}}$: the sequence of $u_{n} \in E$, i.e. the function $u: \mathbb{N} \longleftrightarrow E, n \mapsto u_{n}$.

Derivatives and differential calculus

$f^{\prime}:$ derivative ${ }^{4}$ of f, e.g. $\ln ^{\prime}(x)=\frac{1}{x}, \forall x>0$. May be written \dot{x} (in physics),
$f^{\prime \prime}$: second derivative of $f($ or \ddot{x} in physics $)$, $f^{\prime \prime \prime}$ third derivative, $\ldots, f^{(n)} n^{\text {th }}$ derivative for $n \geqslant 0$,
$f^{n}: n^{\text {th }}$ power of f for $n \geqslant 0$ (be careful, it is not a derivative $f^{(n)}$!),
$D_{j} f:$ partial derivative of f for the $j^{\text {th }}$ coordinate,
∇f : gradient of f (also written Grad f),
$\operatorname{Div} f$: divergence of f.

[^3]
Integrals

$\int_{a}^{b} f(x) \mathrm{d} x$: integral of the function $f: x \mapsto f(x)$ on (a, b),
$\int f$: integral of the function f on its domain (when it is not ambiguous),
$\oint f(x) \mathrm{d} x$: curvilinear integral of f,
$\iint_{(a, b) \times(c, d)} f(x, y) \mathrm{d} x \mathrm{~d} y$: double integral of the 2-variables function $f:(a, b) \times(c, d),(x, y) \mapsto f(x, y)$.

Usual functions spaces

$\mathcal{F}(E, F)$: functions from E to F, i.e. F^{E},
$\mathcal{C}(E, F)$: continuous functions from E to F,
$\mathcal{C}(E)$: continuous functions from E to E,
$\mathcal{C}_{b}(E, F)$: bounded and continuous functions from E to F,
$\mathcal{C}^{k}(E, F): k$-time differentiable functions, of $k^{\text {th }}$ derivatives being continuous, from E to $F(k \in \mathbb{N})$,
$\mathcal{C}^{o o}(E, F)$: infinitely differentiable functions, from E to F,
$\mathcal{L}(E, F)$: linear applications from E to F,
$\mathcal{L}(E)$: linear applications from E to E.
$\mathcal{L}_{c}(E, F)$: continuous and linear applications from E to F,

Want more? A list of mathematical symbols : en.wikipedia.org/wiki/Table_of_mathematical_symbols, on Wikipédia, and some others lists on mathematical notations, on Wikipédia.

[^0]: ${ }^{1}$ It is latin.

[^1]: ${ }^{2}$ If you are curious, this page on Wikipédia explains how and $w h y$ we have to limit the expressiveness of this way to define set.

[^2]: ${ }^{3}$ When this as a meaning.

[^3]: ${ }^{4}$ If it exists!

