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Abstract

Today, I was asked an interesting question in my tutorial about mathematical back-

ground of the operator calculus, the method that involves solving an algebraic equation

of operators introduced in EE 101 to help solving linear ordinary differential equations.

In this note, I would like to connect operator calculus to some of the rigorous techniques

we are presenting in MA 101. This note is not trying to claim that there is something

wrong with operator calculus but only trying to present the mathematical meaning

of the same. The first two sections will present clarification on the notation and the

third section will present connections to solutions to linear time-invariant differential

equations.

1 Operators: Basics

As we have seen in MA 101, a function, say f , always has a domain D and a range R and we
use the notation f : D → R to denote that the function takes elements from D to produce
elements of R. In MA 101, we assumed D and R are subsets of the real numbers R.

Now, let F denote the set of all smooth real functions (operating on real numbers). Here,
smooth indicates that the function is differentiable everywhere and upto any order (that is,
twice differentiable, thrice differentiable etc.). So if f ∈ F then f : R → R is a smooth
function.

With a little bit of imagination we can define functions F : F → F . For example,
indefinite integrals may be viewed as such functions. Alternatively, definite integrals may
be viewed as functions with domain F and range R. It is customary to call functions with
domain F are called as operators. One such operator is the first derivative. Specifically, let
D : F → F denote an operator defined by Dy = y′ for all y ∈ F . Note that since y ∈ F

it follows that y′ ∈ F (since y is smooth). Hence, the notation D : F → F is well defined.
Now, we can define D2 to denote the composite operator D ◦ D. It is easy to show that
D2y = y′′ for all y ∈ F and D2 : F → F . Similarly, we can extend the notation to Dn

where n is some nonnegative integer. Specifically, D0 denotes the identity operator, that is,
D0y = y and D1 is D. It is customary to denote D0 by 1.

Now, let L denote a polynomial in D, that is,

L = a0D
0 + a1D

1 + · · ·+ anD
n,
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where ak ∈ R, k = 1, . . . , n. Once again, it is easy to show that L : F → F , that is, for every
y ∈ F , Ly produces a smooth function. Knowing all the facts of derivatives (introduced in
MA 101) it is easy to show that for every pair y1, y2 ∈ F and α1, α2 ∈ R,

L(α1y1 + α2y2) = α1Ly1 + α2Ly2.

Hence, L is a linear operator. Although this note is about only linear opertors, one can
imagine nonlinear operators and they pose even more difficult problems.

2 Polynomial Functions of Operators

Ready for next level of abstraction? Let P denote a polynomial function on the set of
operators, that is, P is an operator on operators. For example, define P (D) ≡ D2 +2D+1.
Note that P is not a function on F or R or something as simple. It is a function on set of
operators and to avoid introducing more notation I chose not give a symbol to this set. P is
like a super-operator or a meta-operator. Of course, when P operates on D it produces the
value P (D) which can be defined as L, an operator from F → F . Though L = P (D) there
is a difference between L and P (D). The difference is subtle. For example, L = D2+2D+1
is like saying b = a2 + 2a+ 1 for some a, b ∈ R. But the notation P (D) can be extended to
denote some thing like P (D2), which is D4+2D2+1 (more like defining a function p : R → R

given by by p(a) = a2 + 2a + 1, which has the flexibility of denoting other values such as
p(a2) etc.). With a minor abuse of notation, I would like to use the notation P (λ) (where
λ ∈ R) to denote λ2 + 2λ+ 1 (in this example). Why is this an abuse of notation? Because
the notation P (λ) is valid only if P : R → R and we defined P as an operator on operators.

Now, we will end this section with an interesting observation. let y ∈ F be given by
y(x) = eλx for all x ∈ R where λ ∈ R. Continuing with the same example, L = P (D) =
D2 + 2D + 1,

Ly(x) = P (D)(y(x)) = (D2 + 2D + 1)(eλx) = (λ2 + 2λ+ 1)eλx = P (λ)y(x).

Hidden above is the identity P (D)y(x) = P (λ)y(x), which will be very useful below.

3 Linear Differential Equations

Let L a polynomial of the operator D, that is, L = P (D) where P is the corresponding
polynomial function of operators. Then for a given function y ∈ F ,

Ly = P (D)y = 0

denotes a linear time-invariant (ordinary) differential equation. For example, if L = D2 +
2D + 1 then Ly = 0 is same as

(D2 + 2D +D0)y = 0,

or, equivalently,
D2y + 2Dy + y = 0.
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In the usual notation of derivatives Ly = 0 may also be represented by

d2y

dx2
+ 2

dy

dx
+ y = 0,

where we implicitly assumed that function y ∈ F is written in terms of the independent
(real) variable x, that is, y(x) denotes the value of y at x, Dy(x) denotes y′(x), the first
derivative at x etc.

Now, consider the problem of determining solutiosn to the differential equation

Ly = P (D)y = 0,

where L is a polynomial of the operator D and P , the corresponding polynomial function.
Of course, many issues will pop up immediately: i) What do we mean by a solution to a
differential equation?, ii) Is it right to say “the solution”, that is, can we claim that the
solution is unique?. All these questions will be addressed in a later semester.

Since we have shown that L(eλkx) = P (λk)e
λkx it follows that P (λk) = 0 for all k =

1, . . . , n. So a standard technique to solve differential equations of the form P (D)y = 0 is to
solve (for λ) the algebraic equation

P (λ) = 0,

and use the roots to finally write out the solution to our original differential equation Ly = 0.
The equation P (λ) = 0 is called as the characteristic equation of the differential equation
Ly = 0.

Sometimes we are allowed to be lazy and treat P (D) = 0 as an algebraic equation and
roots of the equation can then be used to get the solutions of the diffential equation. Of
course, mathematically, this is wrong. But if you understand the background then you are
allowed (in non-MA courses) to break the rules for sake of convenience.

We will close this note by stating a theorem without giving a proof. The proof awaits
you in a more advanced mathematics course.

Theorem 1 Let P denote an n-th order polynomial function of operators. Assume that
P (λ) = 0 have n distinct roots denoted by λk, k = 1, 2, . . . , n. Then the general solution
to the linear time-invariant differential equation Ly = 0 (where L = P (D)) is given by∑

n

k=1
cke

λkx.

The case of non-distinct roots is more involved and I am sure it is discussed clearly in
EE101 (at least for second order differntial equations).

Hope this helps.
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