MA101

Exercise

Recall that $\mathbb{R}^*_+ \stackrel{\text{def}}{=} (0, +\infty)$ is the set of positive real numbers (*i.e.* $\mathbb{R}^*_+ = \{x : x \in \mathbb{R}, x > 0\}$). Let $a, b \in \mathbb{R}^*_+$ (a > 0, b > 0).

Consider the set
$$E = \left\{ (-1)^n a + \frac{b}{n} : n \in \mathbb{N}^* \right\}.$$
 (Of course $E \subset \mathbb{R}.$)

- 1. (for A group) Determine (if they exist) the **maximum**, the **supremum**, and *one* **upper bound** of this set E.
- 2. (for B group) Determine (if they exist) the **minimum**, the **infimum**, and *one* lower bound of this set E.

Solution for A group (max)

Just to check: First of all, in the definition of E, n > 0 because in $\mathbb{N}^* = \mathbb{N} \setminus \{0\}$, so $\frac{b}{n}$ is well defined.

Studying E: Then, for any $n \in \mathbb{N}^*$, let $u_n = (-1)^n a + \frac{b}{n}$. We have $u_{2n} = a + \frac{b}{2n}$ and $u_{2n-1} = -a + \frac{b}{2n-1}$. The two sequences $(u_{2n})_{n \in \mathbb{N}^*}$ and $(u_{2m-1})_{m \in \mathbb{N}^*}$ are decreasing, because b > 0. So if we define $E_{\text{even}} \stackrel{\text{def}}{=} \{u_{2n} : n \in \mathbb{N}^*\}$ and $E_{\text{odd}} \stackrel{\text{def}}{=} \{u_{2m-1} : m \in \mathbb{N}^*\}$, then $E_{\text{even}} \cup E_{\text{odd}}$. But because the sequences decrease, both E_{even} and E_{odd} have a greatest element:

• max $E_{\text{even}} = u_2$ is well defined (for n = 1), *i.e.* max $E_{\text{even}} = a + \frac{b}{2}$,

• and max $E_{\text{odd}} = u_1$ is well defined (for m = 1), *i.e.* max $E_{\text{odd}} = -a + \frac{b}{1} = b - a$.

Therefore *E* also have a greatest element, given by $\max E = \max(\max(E_{\text{even}}), \max(E_{\text{odd}}))$. We conclude with $\max E = \max(a + \frac{b}{2}, b - a)$. So *E* is upper-bounded and $\sup E = \max E$. One upper bound is a + b, and another one (less precise) is a + b + 2014 (indeed, $\forall x \in E, x \leq a + b$ so $\forall x \in E, x \leq a + b + 2014$). Any number bigger than a + b is **an** upper bound!

Bonus: We precise the notation with $E_{a,b} \stackrel{\text{def}}{=} \left\{ (-1)^n a + \frac{b}{n} : n \in \mathbb{N}^* \right\}$. Find one pair a, b such that $\max E_{a,b} = a + \frac{b}{2}$ and another pair a', b' such that $\max E_{a',b'} = b' - a'$.

Answer: With a = 100, b = 1, we have $\max E_{100,1} = a + \frac{b}{2} = 100 + \frac{1}{2}$. With a' = 2, b' = 50, we have $\max E_{2,50} = b' - a' = 50 - 2 = 48$.

Please, report any issue to MA101@crans.org

¹In fact, $E = E_{\text{even}} \oplus E_{\text{odd}}$: these two sets form a partition of E.

MA101

Solution for B group (min)

Just to check: First of all, in the definition of E, n > 0 because in $\mathbb{N}^* = \mathbb{N} \setminus \{0\}$, so $\frac{b}{n}$ is well defined.

Studying E: Then, for any $n \in \mathbb{N}^*$, let $u_n = (-1)^n a + \frac{b}{n}$. We have $u_{2n} = a + \frac{b}{2n}$ and $u_{2n-1} = -a + \frac{b}{2n-1}$. The two sequences $(u_{2n})_{n \in \mathbb{N}^*}$ and $(u_{2m-1})_{m \in \mathbb{N}^*}$ are decreasing, because b > 0. And we know that $u_{2n} \xrightarrow[n \to +\infty]{} a$ and $u_{2m-1} \xrightarrow[m \to +\infty]{} -a$, because $\frac{b}{k} \xrightarrow[k \to +\infty]{} 0$. So if we define $E_{\text{even}} \stackrel{\text{def}}{=} \{u_{2n} : n \in \mathbb{N}^*\}$ and $E_{\text{odd}} \stackrel{\text{def}}{=} \{u_{2m-1} : m \in \mathbb{N}^*\}$, then² $E = E_{\text{even}} \cup E_{\text{odd}}$. But because the sequences decrease (strictly) so:

- inf $E_{\text{even}} = \lim_{n \to +\infty} u_{2n} = a$, and E_{even} does not have a smallest element,
- inf $E_{\text{odd}} = \lim_{m \to +\infty} u_{2m-1} = -a$, and E_{odd} does not have a smallest element.

And because of the partition², $\inf E = \min(\inf(E_{\text{even}}), \inf(E_{\text{odd}}))$. We conclude by saying that E is lower-bounded and $\inf E = \min(a, -a) = -a$ (because a > 0), and E does not have a smallest element.

Therefore one lower bound is -a, and another one (less precise) is -a-7 (indeed, $\forall x \in E, x \ge -a$ so $\forall x \in E, x \ge -a-7$). Any number smaller than -a is **a** lower bound!

 $^{^2}$ In fact, = $E_{\rm even} \uplus E_{\rm odd}$: these two sets form a partition of E.