Exercise

Recall that $\mathbb{R}_{+}^{*} \stackrel{\text { def }}{=}(0,+\infty)$ is the set of positive real numbers (i.e. $\mathbb{R}_{+}^{*}=\{x: x \in \mathbb{R}, x>0\}$). Let $a, b \in \mathbb{R}_{+}^{*}(a>0, b>0)$.
Consider the set $E=\left\{(-1)^{n} a+\frac{b}{n}: n \in \mathbb{N}^{*}\right\}$.
(Of course $E \subset \mathbb{R}$.)

1. (for A group) Determine (if they exist) the maximum, the supremum and one upper bound of this set E.
2. (for B group) Determine (if they exist) the minimum, the infimum and one lower bound of this set E.

Solution for A group (max)

Just to check: First of all, in the definition of $E, n>0$ because in $\mathbb{N}^{*}=\mathbb{N} \backslash\{0\}$, so $\frac{b}{n}$ is well defined.

Studying E : Then, for any $n \in \mathbb{N}^{*}$, let $u_{n}=(-1)^{n} a+\frac{b}{n}$.
We have $u_{2 n}=a+\frac{b}{2 n}$ and $u_{2 n-1}=-a+\frac{b}{2 n-1}$.
The two sequences $\left(u_{2 n}\right)_{n \in \mathbb{N}^{*}}$ and $\left(u_{2 m-1}\right)_{m \in \mathbb{N}^{*}}$ are decreasing, because $b>0$.
So if we define $E_{\text {even }} \stackrel{\text { def }}{=}\left\{u_{2 n}: n \in \mathbb{N}^{*}\right\}$ and $E_{\text {odd }} \stackrel{\text { def }}{=}\left\{u_{2 m-1}: m \in \mathbb{N}^{*}\right\}$, then ${ }^{1} E=E_{\text {even }} \cup E_{\text {odd }}$.
But because the sequences decrease, both $E_{\text {even }}$ and $E_{\text {odd }}$ have a greatest element:

- $\max E_{\text {even }}=u_{2}$ is well defined (for $n=1$), i.e. $\max E_{\text {even }}=a+\frac{b}{2}$,
- and $\max E_{\text {odd }}=u_{1}$ is well defined (for $m=1$), i.e. $\max E_{\text {odd }}=-a+\frac{b}{1}=b-a$.

Therefore E also have a greatest element, given by $\max E=\max \left(\max \left(E_{\text {even }}\right), \max \left(E_{\text {odd }}\right)\right)$.
We conclude with $\max E=\max \left(a+\frac{b}{2}, b-a\right)$. So E is upper-bounded and $\sup E=\max E$.
One upper bound is $a+b$, and another one (less precise) is $a+b+2014$ (indeed, $\forall x \in E, x \leqslant a+b$ so $\forall x \in E, x \leqslant a+b+2014)$. Any number bigger than $a+b$ is an upper bound!

Bonus: We precise the notation with $E_{a, b} \stackrel{\text { def }}{=}\left\{(-1)^{n} a+\frac{b}{n}: n \in \mathbb{N}^{*}\right\}$.
Find one pair a, b such that $\max E_{a, b}=a+\frac{b}{2}$ and another pair a^{\prime}, b^{\prime} such that $\max E_{a^{\prime}, b^{\prime}}=b^{\prime}-a^{\prime}$.
Answer: With $a=100, b=1$, we have $\max E_{100,1}=a+\frac{b}{2}=100+\frac{1}{2}$. With $a^{\prime}=2, b^{\prime}=50$, we have $\max E_{2,50}=b^{\prime}-a^{\prime}=50-2=48$.

[^0]
Solution for B group (min)

Just to check: First of all, in the definition of $E, n>0$ because in $\mathbb{N}^{*}=\mathbb{N} \backslash\{0\}$, so $\frac{b}{n}$ is well defined.

Studying E : Then, for any $n \in \mathbb{N}^{*}$, let $u_{n}=(-1)^{n} a+\frac{b}{n}$.
We have $u_{2 n}=a+\frac{b}{2 n}$ and $u_{2 n-1}=-a+\frac{b}{2 n-1}$.
The two sequences $\left(u_{2 n}\right)_{n \in \mathbb{N}^{*}}$ and $\left(u_{2 m-1}\right)_{m \in \mathbb{N}^{*}}$ are decreasing, because $b>0$.
And we know that $u_{2 n} \underset{n \rightarrow+\infty}{ } a$ and $u_{2 m-1} \underset{m \rightarrow+\infty}{\rightarrow}-a$, because $\frac{b}{k} \underset{k \rightarrow+\infty}{\rightarrow} 0$.
So if we define $E_{\text {even }} \stackrel{\text { def }}{=}\left\{u_{2 n}: n \in \mathbb{N}^{*}\right\}$ and $E_{\text {odd }} \stackrel{\text { def }}{=}\left\{u_{2 m-1}: m \in \mathbb{N}^{*}\right\}$, then ${ }^{2}{ }^{2} E=E_{\text {even }} \cup E_{\text {odd }}$. But because the sequences decrease (strictly) so:

- $\inf E_{\text {even }}=\lim _{n \rightarrow+\infty} u_{2 n}=a$, and $E_{\text {even }}$ does not have a smallest element,
- $\inf E_{\text {odd }}=\lim _{m \rightarrow+\infty} u_{2 m-1}=-a$, and $E_{\text {odd }}$ does not have a smallest element.

And because of the partition ${ }^{[2]}, \inf E=\min \left(\inf \left(E_{\text {even }}\right), \inf \left(E_{\text {odd }}\right)\right)$. We conclude by saying that E is lower-bounded and $\inf E=\min (a,-a)=-a$ (because $a>0$), and E does not have a smallest element.

Therefore one lower bound is $-a$, and another one (less precise) is $-a-7$ (indeed, $\forall x \in E, x \geqslant-a$ so $\forall x \in E, x \geqslant-a-7)$. Any number smaller than $-a$ is a lower bound!

[^1]
[^0]: ${ }^{1}$ In fact, $E=E_{\text {even }} \uplus E_{\text {odd }}$: these two sets form a partition of E.

[^1]: ${ }^{2}$ In fact, $=E_{\text {even }} \uplus E_{\text {odd }}:$ these two sets form a partition of E.

