Sets and Applications.

- 1. Verify that these boolean formulas are *tautologies* (*i.e.* assertions that are **trues** no matter the truth values given to the variables A, B and C):
 - (i) not $(A \text{ and } B) \Leftrightarrow (\text{not } A)$ or (not B) (first DE MORGAN law),
 - (ii) not $(A \text{ or } B) \Leftrightarrow (\text{not } A)$ and (not B) (second DE MORGAN law),
 - (iii) $(A \text{ and } (B \text{ or } C)) \Leftrightarrow (A \text{ and } B) \text{ or } (A \text{ and } C) \text{ (first distributivity)},$
 - (iv) (extbfBonus:)(A or (B and C)) \Leftrightarrow (A or B) and (A or C) (second distributivity),
- 2. Transform these sentences into mathematical properties, with the quantifiers \exists and \forall :
 - (i) For any real number x, x squared is non-negative,
 - (ii) If a real number is non-positive, we get a non-negative number when we multiply it by -2,
 - (iii) For any complex number z, there exists a complex number y such that $y^2 3y = z$,
 - (iv) (extbfBonus:)If a real number has a square root, then it is non-negative.
- 3. Find a relationship between the two sets A and B for every of these cases: (ot might be inclusion, equality, ...):
 - (i) $A = \mathbb{R}$ et $B = \{x \in \mathbb{R} : x^2 + x + 1 \le 0\},\$
 - (ii) $A = \mathbb{R}^*_+$ et $B = \{x \in \mathbb{R} : 2x \ge x\},\$
 - (iii) $A = \{2x : x \in C\}$ et $B = \{20x : x \in \mathbb{R}\}$ with $C \stackrel{\text{def}}{=} \mathbb{R}_+$,
 - (iv) $A = \{2x : x \in C\}$ et $B = \{20x : x \in \mathbb{R}\}$ with $C \stackrel{\text{def}}{=} \mathbb{N}$.
- 4. Write the negation of these statements, and try to determine which one is true (the initial formula or its negative form):
 - (i) $\forall x \in \mathbb{R}, x^2 + x + 1 \ge 0$,
 - (ii) $\exists y \in \mathbb{R}, (y \ge 0)$ and $(y \le 0)$,
 - (iii) $\forall x \in \mathbb{R}, (x \ge 0 \stackrel{\text{def}}{=} > (\exists y \in \mathbb{R}^*_+, x = y^2)),$
 - (iv) (Bonus) $\forall \forall \varepsilon \in \mathbb{R}^*_+, \exists \mu_{\forall \varepsilon} \in \mathbb{R}^*_+, \forall x \in \mathbb{R}, (|x-1| \leq \mu_{\forall \varepsilon} => |x^2 1| \leq \forall \varepsilon)$ (this one is hard).
- 5. Prove¹ the following statements, for any $n \in \mathbb{N}$:

¹One could reason by induction on the integer $n \ge 0$.

(i)
$$\sum_{k=0}^{k=n} k = \frac{n(n+1)}{2}$$
,
(ii) $\sum_{k=0}^{k=n} k^2 = \frac{n(n+1)(2n+1)}{6}$,
(iii) $\sum_{k=0}^{k=n} k^3 = (\frac{n(n+1)}{2})^2$.

Please, report any issue to MA101@crans.org 2