Some simple exercises.

- 1. Solve (in \mathbb{R}) this equation $x^2 + 3x + 3 = 0$.
- 2. Find two complex numbers a and b such that for any complex z, different from 0 and -1, we have: $\frac{1}{z(z+1)} = \frac{a}{z} + \frac{b}{z+1}$ (this is an example of decomposition into simple elements).
- 3. Solve this differential equation y' 3y = 0.
- 4. Find the definition domain and **one** primitive of these functions:
 - (i) $f : \mathbb{R} \longleftrightarrow \mathbb{R}, x \mapsto x^3 3$,
 - (ii) $g: \mathbb{R}^*_+ \longleftrightarrow \mathbb{R}, x \mapsto \ln(x) 3$ (where \mathbb{R}^*_+ is a shortcut for $\mathbb{R} \cap (0, +\infty)$),
 - (iii) $h : \mathbb{R} \longleftrightarrow \mathbb{R}, x \mapsto x^2 e^x$.

5. What can you say regarding the behavior of this function, defined on \mathbb{R} by $f(x) = e^{-x}$, when x tends to $+\infty$? Same question for the function $g(x) = \frac{e^x}{x}$, defined on $\mathbb{R}^* \ (\mathbb{R}^* \stackrel{\text{def}}{=} \mathbb{R} \setminus \{0\}).$

6. Give the (non-negative) integer divisors of 24? Same question for 63, 125, et 2014.

7. Compute this integral $\int_0^{\pi} \sin(2x) dx$.

- 8. Let consider the real sequence $(u_n)_{n \in \mathbb{N}}$, defined by $u_0 = 3$ and $u_{n+1} = 5u_n + 3$ for any integer *n*. Explicit $(u_n)_{n \in \mathbb{N}}$ (*i.e.* explicit the general term u_n).
- 9. We call a *perfect number* a (integer) number equals to the *half* of the sum of its non-negative divisors. Could you find one? And a second one (if you have the time)?
- 10. Compute¹ this sum: $\sum_{k=1}^{k=n} \frac{1}{k(k+1)}$, for any positive integer number n > 0?
- 11. How many *prime*² numbers is there? You should try to prove this **very rigorously**.
- 12. If $\theta \in \mathbb{R}$ and $n \in \mathbb{N}$, compute this sum: $\sum_{k=0}^{k=n} \cos(k\theta)$.

¹The well-known formula $\frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}$ (for any k/=0) might be useful...

²We recall that an integer number $p \ge 2$ is *prime* if its only non-negative divisors are 1 and p.

- 13. If $\theta \in \mathbb{R}$ et de $n \in \mathbb{N}$, compute this product: $\prod_{k=0}^{k=n} 2\cos(2^k\theta)$.
- 14. We consider this differential equals E: y'(x) + y(x) = x (where the unknown is y, a differentiable function from \mathbb{R} to \mathbb{R}). Can you give all the solutions of E? Prove that there is an unique solution y_0 which takes the value 0 in 0 (*i.e.* y_0 satisfying E and $y_0(0) = 0$). Could you give an explicit form of this peculiar solution y_0 ?

Remark 1. Remember that the symbols \sum and \prod are used to write sums and products in a short way.

That means: $\sum_{k=1}^{k=n} f(k) \text{ is a shortcut for the sum } f(1) + f(2) + \dots + f(n-1) + f(n) \text{ for}$ any $n \ge 1$, and $\prod_{k=1}^{k=n} g(k) \text{ is a shortcut for the product } g(1) \times g(2) \times \dots \times g(n-1) \times g(n)$ for any $n \ge 1$.

Remark 2. Usually, the index k is only specified once, for the first value (k = 1): $\sum_{k=1}^{k=n} f(k) = \sum_{k=1}^{n} f(k).$ And when it nos ambiguous, one can forget to precise the

name of the index in the first value: $\sum_{k=1}^{n} f(k) = \sum_{k=1}^{n} f(k)$.