Some simple exercises.

1. Solve (in \mathbb{R}) this equation $x^{2}+3 x+3=0$.
2. Find two complex numbers a and b such that for any complex z, different from 0 and -1 , we have: $\frac{1}{z(z+1)}=\frac{a}{z}+\frac{b}{z+1}$ (this is an example of decomposition into simple elements).
3. Solve this differential equation $y^{\prime}-3 y=0$.
4. Find the definition domain and one primitive of these functions:
(i) $f: \mathbb{R} \longleftrightarrow \mathbb{R}, x \mapsto x^{3}-3$,
(ii) $g: \mathbb{R}_{+}^{*} \longleftrightarrow \mathbb{R}, x \mapsto \ln (x)-3$ (where \mathbb{R}_{+}^{*} is a shortcut for $\mathbb{R} \cap(0,+\infty)$),
(iii) $h: \mathbb{R} \longleftrightarrow \mathbb{R}, x \mapsto x^{2} \mathrm{e}^{x}$.
5. What can you say regarding the behavior of this function, defined on \mathbb{R} by $f(x)=$ e^{-x}, when x tends to $+\infty$? Same question for the function $g(x)=\frac{\mathrm{e}^{x}}{x}$, defined on $\mathbb{R}^{*}\left(\mathbb{R}^{*} \stackrel{\text { def }}{=} \mathbb{R} \backslash\{0\}\right)$.
6. Give the (non-negative) integer divisors of 24 ? Same question for 63,125 , et 2014.
7. Compute this integral $\int_{0}^{\pi} \sin (2 x) \mathrm{d} x$.
8. Let consider the real sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$, defined by $u_{0}=3$ and $u_{n+1}=5 u_{n}+3$ for any integer n. Explicit $\left(u_{n}\right)_{n \in \mathbb{N}}$ (i.e. explicit the general term $\left.u_{n}\right)$.
9. We call a perfect number a (integer) number equals to the half of the sum of its non-negative divisors. Could you find one? And a second one (if you have the time)?
10. Compute ${ }^{1}$ this sum: $\sum_{k=1}^{k=n} \frac{1}{k(k+1)}$, for any positive integer number $n>0$?
11. How many prim ϵ^{2} numbers is there? You should try to prove this very rigorously.
12. If $\theta \in \mathbb{R}$ and $n \in \mathbb{N}$, compute this sum: $\sum_{k=0}^{k=n} \cos (k \theta)$.

[^0]13. If $\theta \in \mathbb{R}$ et de $n \in \mathbb{N}$, compute this product: $\prod_{k=0}^{k=n} 2 \cos \left(2^{k} \theta\right)$.
14. We consider this differential equals $E: y^{\prime}(x)+y(x)=x$ (where the unknown is y, a differentiable function from \mathbb{R} to \mathbb{R}). Can you give all the solutions of E ? Prove that there is an unique solution y_{0} which takes the value 0 in 0 (i.e. y_{0} satisfying E and $\left.y_{0}(0)=0\right)$. Could you give an explicit form of this peculiar solution y_{0} ?

Remark 1. Remember that the symbols \sum and \prod are used to write sums and products in a short way.
That means: $\sum_{k=1}^{k=n} f(k)$ is a shortcut for the sum $f(1)+f(2)+\cdots+f(n-1)+f(n)$ for any $n \geqslant 1$, and $\prod_{k=1}^{k=n} g(k)$ is a shortcut for the product $g(1) \times g(2) \times \cdots \times g(n-1) \times g(n)$ for any $n \geqslant 1$.

Remark 2. Usually, the index k is only specified once, for the first value $(k=1)$: $\sum_{k=1}^{k=n} f(k)=\sum_{k=1}^{n} f(k)$. And when it nos ambiguous, one can forget to precise the name of the index in the first value: $\sum_{k=1}^{n} f(k)=\sum_{1}^{n} f(k)$.

[^0]: ${ }^{1}$ The well-known formula $\frac{1}{k(k+1)}=\frac{1}{k}-\frac{1}{k+1}($ for any $k /=0)$ might be useful...
 ${ }^{2}$ We recall that an integer number $p \geqslant 2$ is prime if its only non-negative divisors are 1 and p.

