Ex. 1 (B group): Corner Circle

A unit circle is placed against a right angle. What is radius of the smaller circle (in cm) ?

Figure 1: Corner Circle
Solution: We have $(1+r)^{2}=2(1-r)^{2}$, from the Pythagorean theorem (in the rectangle triangle in Figure 11). Then r is a solution of the equation $r^{2}-6 r+1=0$, so $r=3 \pm 2 \sqrt{2}$. But $r<1$, then $r=3-2 \sqrt{2} \simeq 0.1715 \mathrm{~cm}$.

Ex. 2 (B group): Cubes and Multiples of 7

Prove that for any number that is not a multiple of seven, its cube is one more or one less than a multiple of seven. Formally, this would be written as: $\forall n \in \mathbb{N}^{*}, 7 \nmid n \stackrel{\text { def }}{=}>7 \mid n^{3} \pm 1$.

Solution: Let write n as $7 a+b$, with $b \in\{1,2,3,4,5,6\}$ the remainder of n divided by 7 . We have $n^{3}=(7 a+b)^{3}=7\left(7^{2} \times a^{3}+3 \times 7 a^{2} \times b+3 \times a \times b^{2}\right)+b^{3}=7 c+b^{3}$ (with some c), therefore $n^{3}=b^{3} \bmod 7$. Therefore, we just have to compute $b^{3} \bmod 7$ for all the 6 possibles values for b :

b	1	2	3	4	5	6
b^{3}	1	8	27	64	125	216
$b^{3} \bmod 7$	1	1	6	1	6	6

And $6=-1 \bmod 7$, so $n^{3}= \pm 1 \bmod 7$

Ex. 3 (B group): About continuity

Let f be a function from an interval $[a, b]$ to \mathbb{R} (with $a, b \in \mathbb{R}, a<b$), and $x_{0} \in[a, b]$.

1. Recall the formal definition of f being continuous at this point x_{0} (as a pure formula with variables, well introduced with quantifiers \forall and \exists).
2. If f is continuous at x_{0}, does this mean f is differentiable at x_{0} ?

If yes, (try to) prove it. If not, (try to) give a counter-example.

Solution:

1. f is continuous at x_{0} iff $\forall \varepsilon>0,\left(\exists \eta_{\varepsilon, x_{0}}>0,\left(\forall y \in[a, b],\left(|x-y|<\eta_{\varepsilon, x_{0}} \stackrel{\text { def }}{=}>\left|f\left(x_{0}\right)-f(y)\right|<\right.\right.\right.$ $\varepsilon)$)),
2. No, with the simple example of the absolute value $|.|: \mathbb{R} \longleftrightarrow \mathbb{R}, x \mapsto| x|$, continuous on \mathbb{R}, but not differentiable on $x_{0} \stackrel{\text { def }}{=} 0$.

Ex. 1 (A group): 3 prime numbers?

Given that $a, b, c \in \mathbb{N}^{*}$ are three non-negative integers, if we have $a b c+a b+b c+c a+a+b+c+1=1001$, what is the value of $a+b+c$?

Hint: $1001=7 \times 11 \times 13$.

Solution: We write $a b c+a b+b c+c a+a+b+c+1$ as $(a+1)(b+1)(c+1)$, and then we compute the prime decomposition of this number 1001 (given as a hint). The three integers are such that $a>0, b>0, c>0$, we know that $(a+1) \geqslant 2,(b+1) \geqslant 2,(c+1) \geqslant 2$. As we have $1001=7 \times 11 \times 13=(a+1)(b+1)(c+1)$, then by uniqueness of the prime decomposition, we can say that $\{a+1, b+1, c+1\}=\{7,11,13\}$ (as a non-ordered set). Finally, $a+b+c=$ $(a+1)+(b+1)+(c+1)-3=7+11+13-3=6+10+12=28$.

Ex. 2 (A group): Cables

A telephone company places round cables in round ducts.
Assuming the diameter of a cable is 2 cm , what would the diameter of the duct be for two cables, three cables and four cables?

Figure 2: Cables

Solution: Quick version: 2 cm for two cables, $2+4 \frac{\sqrt{3}}{3} \simeq 4.31 \mathrm{~cm}$ for three cables, and $\sqrt{8}+2 \mathrm{~cm}$ for four cables.

Clearly the duct for two cables must have a diameter of 4 cm , however, the duct for three and four cables requires a little more effort.

Let us first consider the three cable duct. The center of each circle form a equilateral triangle, of side of length 2 cm and of height h. First of all we use the Pythagorean theorem to find the height of the triangle, $2^{2}=h^{2}+1^{2}$, therefore $h=\sqrt{3}=1.73 \mathrm{~cm}$. Using the geometric result that states the centre of an equilateral triangle is $1 / 3$ the height of the triangle, we deduce that the distance from the centre of the triangle to its apex is $(2 / 3) h=2 \sqrt{3} / 3 \simeq 1.15 \mathrm{~cm}$. So the duct radius will be $2 \sqrt{3} / 3+1$, hence the diameter will be $4 \sqrt{3} / 3+2 \mathrm{~cm}$.

Now we consider the duct for four cables. The center of each circle form a square, of side of length 2 cm , and of diagonal d. Using the Pythagorean theorem, $d^{2}=2^{2}+2^{2}$, giving $d=\sqrt{8} \simeq 2.83 \mathrm{~cm}$. Therefore, the duct diameter will be $r=2+\sqrt{8} \simeq 4.83 \mathrm{~cm}$.

Ex. 3 (A group): About differentiability

Let f be a function from an interval $[a, b]$ to \mathbb{R} (with $a, b \in \mathbb{R}, a<b$), and $x_{0} \in[a, b]$.

1. Recall the formal definition of f being differentiable at this point x_{0} (as a pure formula with variables, well introduced with quantifiers \forall and \exists).
2. If f is differentiable at x_{0}, does this mean f is continuous at x_{0} ? If yes, (try to) prove it. If not, (try to) give a counter-example.

Solution:

1. f is differentiable at x_{0} iff $\exists l \in \mathbb{R},\left(\forall \varepsilon>0,\left(\exists \eta_{\varepsilon, x_{0}}>0,\left(\forall y \in[a, b] \backslash\left\{x_{0}\right\},\left(\left|x_{0}-y\right|<\eta_{\varepsilon, x_{0}} \stackrel{\text { def }}{=}>\right.\right.\right.\right.$ $\left.\left.\left.\left.\left|\frac{f\left(x_{0}\right)-f(y)}{x_{0}-y}-l\right|<\varepsilon\right)\right)\right)\right)$,
2. Yes, by multiplying by $x_{0}-y$ the previous inequality, we have $f(y) \underset{y \rightarrow x_{0}}{\longrightarrow} f\left(x_{0}\right)$.
