Roll No.:

Section:

Consigns: You should be extra cautious about small mistakes, try to explain as much as possible, and do not forget to justify every statements and every steps in your answers.

Ex. 1: Corner Circle

A unit circle is placed against a right angle.

Figure 1: Corner Circle

What is radius of the smaller circle (in cm) ?
Answer:

Ex. 2: Cubes and Multiples of 7

Prove that for any number that is not a multiple of seven, its cube is one more or one less than a multiple of seven.

Formally, this would be written as: $\forall n \in \mathbb{N}^{*}, 7 \nmid n \stackrel{\text { def }}{=}>7 \mid n^{3} \pm 1$.

Answer:

Ex. 3: About continuity

Let f be a function from an interval $[a, b]$ to \mathbb{R} (with $a, b \in \mathbb{R}, a<b$), and $x_{0} \in[a, b]$.

1. Recall the formal definition of f being continuous at this point x_{0} (as a pure formula with variables, well introduced with quantifiers \forall and \exists).
2. If f is continuous at x_{0}, does this mean f is differentiable at x_{0} ?

If yes, (try to) prove it. If not, (try to) give a counter-example.

Answer:

