Roll No.:

Section:

Consigns: You should be extra cautious about small mistakes, try to explain as much as possible, and do not forget to justify every statements and every steps in your answers.

Ex. 1: 3 prime numbers?

Given that $a, b, c \in \mathbb{N}^{*}$ are three non-negative integers, if we have $a b c+a b+b c+c a+a+b+c+1=1001$, what is the value of $a+b+c$?

Hint: $1001=7 \times 11 \times 13$.
Answer:

Ex. 2: Cables

A telephone company places round cables in round ducts.
Assuming the diameter of a cable is 2 cm , what would the diameter of the duct be for two cables, three cables and four cables?

Figure 1: Cables

Ex. 3: About differentiability

Let f be a function from an interval $[a, b]$ to \mathbb{R} (with $a, b \in \mathbb{R}, a<b$), and $x_{0} \in[a, b]$.

1. Recall the formal definition of f being differentiable at this point x_{0} (as a pure formula with variables, well introduced with quantifiers \forall and \exists).
2. If f is differentiable at x_{0}, does this mean f is continuous at x_{0} ? If yes, (try to) prove it. If not, (try to) give a counter-example.

Answer:

