Remarks on grading

Here is the list of who corrected which groups:
Prof. Lilian: A1 and B1,
Prof. Jai: A2 and B2,
Prof. Satya: A3 and B3,
Prof. Vijay: A4,
Prof. Arya: B4.
Marking scheme And regarding the grading, the following scheme was suggested:

- The entire quiz was on 5 points (with grades from $0 / 5$ to $5 / 5$),
- 3 points for question 1 (1 points for justifying differentiability and computing $f^{\prime}(x)$, 1 point for the condition on a, b, c or δ, γ, α for the discriminant \mathbb{D} elta to be non-negative, and 1 point for the good expression of the two critical points x_{1}, x_{2}),
- 1 point for question 2 (0.5 point for computing $f^{\prime \prime}(x)$ and its values at $x_{1}, x_{2}, 0.5$ point if conclusion says which is minimum which is maximum),
- 1 point for question 3 (0.5 point for applying question 1 , checking that \mathbb{D} elta $>0,0.5$ point for applying question 2 , saying which is \max / min).

Exercise for the B group

Let $a, b, c, d \in \mathbb{R}$ be four constants, with $a \neq 0$. We define $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto a x^{3}+b x^{2}+c x+d$, a cubic polynomial function.

Question 1) (3 points) Use the First Derivative test to determine the point(s) where f can have a local extremum (either local maximum or local minimum).
You should find a condition on a, b, c, d for the local extrema to exist, and their (possible) location should also depend on the coefficients a, b, c, d.

Question 2) (1 points) Use the Second Derivative test to determine which of these extremum is a local maximum and which is a local minimum.

Question 3) (1 points) Apply this to find the local maximum and local minimum for this function $f: x \mapsto 2 x^{3}+4 x^{2}-5 x-1$ (if they exist).

Solution for A group

Just to check: The function f is indeed a polynomial, of degree exactly 3 because we ask $a \neq 0$ (so it is cubic).

Answer:

1) f is differentiable on \mathbb{R}, and $f^{\prime}(x)=3 a x^{2}+2 b x+c$ for every $x \in \mathbb{R}$. We can also compute $f^{\prime \prime}(x)=6 a x+2 b$.

Thanks to the Extreme Value Theorem (for f continuous and differentiable on \mathbb{R}), we know that at one local extremum x_{0}, we have $f^{\prime}\left(x_{0}\right)=0$.
Assume x to be a local extremum (either maximum or minimum). It satisfies

$$
\begin{equation*}
3 a x^{2}+2 b x+c=0 \tag{0.1}
\end{equation*}
$$

But solving such a polynomial equation of degree two is something we can easily do. Here, the discriminant is \mathbb{D} elta $=(2 b)^{2}-4(3 a) c=4 b^{2}-12 a c$. As usual, there is three cases regarding its sign:

- Assume that \mathbb{D} elta >0. We have two real roots for the equation 0.1 : $: x_{1,2}=\frac{-(2 b) \pm \sqrt{\mathbb{D} \text { elta }}}{2(3 a)}=$ $\frac{-2 b \pm \sqrt{4 b^{2}-12 a c}}{6 a}=\frac{-b \pm \sqrt{b^{2}-3 a c}}{3 a}$. Therefore, there can be two (different) extrema x_{1} and x_{2}.
- Assume that \mathbb{D} elta $=0$. We have one unique real root for the equation 0.1: $: x_{0}=\frac{-(2 b)}{2(3 a)}=$ $-\frac{b}{3 a}$. Therefore, there can be one extremum x_{0}.
- Assume that \mathbb{D} elta a. We have no real root for the equation 0.1 , therefore the function f cannot have any extremum.

2) Thanks to the previous question, we can know use the test with second derivative, because f is continuous, twice differentiable, of first and second derivatives continuous (here, f is said to be of class \mathcal{C}^{1}).

- If $\mathbb{D e l t a}>0$. There can be two (different) extrema $x_{1}=\frac{-b-\sqrt{b^{2}-3 a c}}{3 a}$ and $x_{2}=$ $\frac{-b+\sqrt{b^{2}-3 a c}}{3 a}$.
- At x_{1}, the double derivative $f^{\prime \prime}$ will take the value $f^{\prime \prime}\left(x_{1}\right)=6 a x_{1}+2 b=6 a \frac{-b-\sqrt{b^{2}-3 a c}}{3 a}+$ $2 b=-2 \sqrt{b^{2}-3 a c}<0$, so we can conclude that the possible extremum x_{1} is indeed an extremum, and it is a (local) maximum.
- At x_{2}, the double derivative $f^{\prime \prime}$ will take the value $f^{\prime \prime}\left(x_{2}\right)=6 a x_{2}+2 b=6 a \frac{-b+\sqrt{b^{2}-3 a c}}{3 a}+$ $2 b=+2 \sqrt{b^{2}-3 a c}>0$, so we can conclude that the possible extremum x_{2} is indeed an extremum, and it is a (local) maximum.
- If $\mathbb{D e l t a}=0$. There can be one extremum x_{0}. At x_{0}, the double derivative $f^{\prime \prime}$ will take the value $f^{\prime \prime}\left(x_{0}\right)=6 a x_{0}+2 b=2\left(3 a\left(-\frac{b}{3 a}\right)+b\right)=0$, but in this case we cannot conclude of the nature of this point x_{0}.
- If \mathbb{D} elta <0. The function f have no extremum.

3) With $f(x)=2 x^{3}+4 x^{2}-5 x-1$, we have $a=2, b=4, c=-5, d=-1$. Here, \mathbb{D} elta $=$ $4 b^{2}-12 a c=4 \times 16+12 \times 2 \times 5=64+120=184=4 \times 46>0$. So, there is two real
solutions for $f^{\prime}(x)=0: x_{1,2}=\frac{-2 b \pm \sqrt{\mathbb{D} \text { elta }}}{6 a}=\frac{-4 \pm \sqrt{46}}{6}$, ie $x_{1}=\frac{-4-\sqrt{46}}{6} \simeq-1.79705$ and $x_{2}=\frac{-4+\sqrt{46}}{6} \simeq 0.46372$. The local minimum is at x_{2} and the local maximum is at x_{1}. This can clearly be seen on the Figure 2 .
4) (Bonus) Here is a quick graphic of this function f.

Figure 1: The function $f: x \mapsto 2 x^{3}+4 x^{2}-5 x-1$ on $[-5,5]$

Exercise for the A group

Let $\gamma, \delta, \alpha, \beta \in \mathbb{R}$ be four constants, with $\gamma \neq 0$. And we define $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto \gamma x^{3}+\delta x^{2}+$ $\alpha x+\beta$, a cubic polynomial function.

Question 1) (3 points) Use the First Derivative test to determine the point(s) where f can have a local extremum (either local maximum or local minimum).
You should find a condition on $\gamma, \delta, \alpha, \beta$ for the local extrema to exist, and their (possible) location should also depend on the coefficients $\gamma, \delta, \alpha, \beta$.

Question 2) (1 points) Use the Second Derivative test to determine which of these extremum is a local maximum and which is a local minimum.

Question 3) (1 points) Apply this to find the local maximum and local minimum for this function $f: x \mapsto x^{3}+2 x^{2}+x+1$ (if they exist).

Solution for A group

Answer:

1) The first two questions were exactly the same, with the only difference being in the notation : for B group, $f(x)=a x^{3}+b x^{2}+c x+d$ and for A group it was $f(x)=\gamma x^{3}+\delta x^{2}+\alpha x+\beta$.
2) So, read the solution for B group, with $a=\gamma, b=\delta, c=\alpha, d=\beta$.
3) The example is different from the one for group B. We have $f(x)=x^{3}+2 x^{2}+x+1$, so it defines $a=1, b=2, c=1, d=1$. Here, \mathbb{D} elta $=4 b^{2}-12 a c=4 \times 4-12 \times 1 \times 1=4=2^{2}>0$. So, there is two real solutions for $f^{\prime}(x)=0: x_{1,2}=\frac{-2 b \pm \sqrt{\mathbb{D} \text { elta }}}{6 a}=\frac{-2 \pm 1}{3}$, ie $x_{1}=-1$ and $x_{2}=-\frac{1}{3}$. The local minimum is at x_{2} and the local maximum is at x_{1}. This can clearly be seen on the Figure 2.
4) (Bonus) Here is a quick graphic of this function f.

Figure 2: The function $f: x \mapsto x^{3}+2 x^{2}+x+1$ on $[-2,0.5]$

