\qquad
Note: Justify your answers (as always!).

Let $a, b, c, d \in \mathbb{R}$ be four constants, with $a \neq 0$. We define $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto a x^{3}+b x^{2}+c x+d$, a cubic polynomial function.

Question 1) Use the First Derivative test to determine the point(s) where f can have a local extremum (either local maximum or local minimum).
You should find a condition on a, b, c, d for the local extrema to exist, and their (possible) location should also depend on the coefficients a, b, c, d.

Question 2) Use the Second Derivative test to determine which of these extremum is a local maximum and which is a local minimum.

Question 3) Apply this to find the local maximum and local minimum for this function $f: x \mapsto 2 x^{3}+4 x^{2}-$ $5 x-1$ (if they exist).

Answer:

You can use this side of the sheet if you need.

