Name:

Roll Number:

Section: A
Note: Justify your answers (as always!).

Let $\gamma, \delta, \alpha, \beta \in \mathbb{R}$ be four constants, with $\gamma \neq 0$. And we define $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto \gamma x^{3}+\delta x^{2}+\alpha x+\beta$, a cubic polynomial function.

Question 1) Use the First Derivative test to determine the point(s) where f can have a local extremum (either local maximum or local minimum).
You should find a condition on $\gamma, \delta, \alpha, \beta$ for the local extrema to exist, and their (possible) location should also depend on the coefficients $\gamma, \delta, \alpha, \beta$.

Question 2) Use the Second Derivative test to determine which of these extremum is a local maximum and which is a local minimum.

Question 3) Apply this to find the local maximum and local minimum for this function $f: x \mapsto x^{3}+2 x^{2}+x+1$ (if they exist).

Answer:

You can use this side of the sheet if you need.

