MA101

Name:

Roll Number:

Section: A___

Note: Justify your answers (as always!).

Let $\gamma, \delta, \alpha, \beta \in \mathbb{R}$ be four <i>constants</i> , with $\gamma \neq 0$	And we define $f:\mathbb{R} \rightarrow$	$\Rightarrow \mathbb{R}, x \mapsto \gamma x^3 + \delta x^2 + \alpha x + \beta$, a cubic
polynomial function.		

Question 1) Use the **First Derivative test** to determine the point(s) where f can have a local extremum (either local maximum or local minimum). You should find a condition on γ , δ , α , β for the local extrema to exist, and their (possible) location should also depend on the coefficients γ , δ , α , β .

- Question 2) Use the **Second Derivative test** to determine which of these extremum is a *local* maximum and which is a *local* minimum.
- Question 3) Apply this to find the local maximum and local minimum for this function $f: x \mapsto x^3 + 2x^2 + x + 1$ (if they exist).

Answer:

You can use the back of the sheet if you need.

You can use this side of the sheet if you need.