Name:

Roll Number:

Section:

Note: Every question carries 1 mark. (You can use the back of the paper for rough work.) As last time, no need to justify your choice, and for a multiple choice question only one (A, B, C or D) is correct.

What are the solution(s) of this homogeneous 2^{nd} order differential equation y'' - 2y' - 8y = 0?

• Q.2) For this non-homogeneous equation $y' + 4y = -x^2$, we ask the initial value y(1) = 0. Which one of these functions is a solution?

A)
$$y(x) = -\frac{1}{4}x^2 + \frac{1}{8}x - \frac{1}{32} + \frac{5}{32}e^{4-4x}$$

C)
$$y(x) = -\frac{1}{2}x^2 + \frac{1}{4}x - \frac{1}{16} + \frac{5}{16}e^{4(x-1)}$$

- B) there is no solution for this initial value problem! D) $y(x) = 2e^{-4x}$
- Q.3) Let S be the series sum of the terms $a_n = \frac{1}{n(n+3)}$ for n > 0, ie $S = \sum_{n=1}^{+\infty} a_n = \sum_{n=1}^{+\infty} \frac{1}{n(n+3)}$. Is S convergent?
 - **A)** No (S will be infinite = $+\infty$ because $a_n > 0$)
- C) Yes (obvious, just because $a_n \underset{n \to +\infty}{\longrightarrow} 0$)
- B) Yes (thanks to the comparison test, the inequality $a_n < \frac{1}{n^2}$ and because $\sum_{n=1}^{+\infty} \frac{1}{n^2}$ converges)
- **D)** Yes (a series of positive terms always converges!)

Bonus: (for +2 marks) Can you quickly (but carefully) compute the value of the sum of the series?

$$\sum_{n=1}^{+\infty} \frac{1}{n(n+3)} = ?$$

- Q.4) Is the real sequence $u = (u_n)_{n \in \mathbb{N}}$ defined by $u_n = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^n$ convergent?
 - **A)** No, u_n is not even correctly defined!
- C) Yes, and it converges to $\frac{1}{\sqrt{5}}$

B) No, $u_n \xrightarrow[n \to +\infty]{} -\infty$

- **D)** No, $u_n \xrightarrow[n \to +\infty]{} +\infty$
- Q.5) What are the solution(s) of this homogeneous 1^{st} order differential equation y' + 4y = 0?