MA101

Section:

Name:

Note: Every question carries 1 mark. (You can use the back of the paper for rough work.)

As last time, no need to justify your choice, and for a multiple choice question only one (A, B, C or D) is correct.

Roll Number:

• Q.1) Is the real sequence $u = (u_n)_{n \in \mathbb{N}}$ defined by $u_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n$ convergent?

A) No, u_n → +∞
B) Yes, and it converges to 1/√5
C) No, u_n is not even correctly defined!
D) No, u_n → -∞

• Q.2) Let S be the series sum of the terms $a_n = \frac{1}{n(n+3)}$ for n > 0, ie $S = \sum_{n=1}^{+\infty} a_n = \sum_{n=1}^{+\infty} \frac{1}{n(n+3)}$. Is S convergent?

- A) Yes (a series of positive terms always converges!) D)
- **B)** Yes (obvious, just because $a_n \xrightarrow[n \to +\infty]{} 0$)
- **D)** Yes (thanks to the comparison test, the inequality $a_n < \frac{1}{n^2}$ and because $\sum_{n=1}^{+\infty} \frac{1}{n^2}$ converges)
- **C)** No (S will be infinite $= +\infty$ because $a_n > 0$)

Bonus: (for +2 marks) Can you quickly (but carefully) compute the value of the sum of the series? $\sum_{n=1}^{+\infty} \frac{1}{n(n+3)} = ?$

• **Q.3**) What are the solutions of this 1^{st} order differential equation y' + 2y = 0?

• Q.4) For this non-homogeneous equation $y' + 2y = x^2$, we add the initial value y(1) = 0. Which one of these functions is a solution?

A)
$$y(x) = \frac{1}{2}x^2 - \frac{1}{2}x + 2$$

B) $y(x) = \frac{1}{2}x^2 - \frac{1}{2}x + \frac{1}{4} - \frac{1}{4}e^{2-2x}$
C) $y(x) = \frac{1}{2}x^2 + 4e^{-2x}$
D) $y(x) = \frac{1}{4} + \frac{7}{4}e^2e^{-2x}$

• **Q.5**) What are the solution(s) of this homogeneous 2^{nd} order differential equation y'' + 2y' - 8y = 0?

Name:

Roll Number:

Section:

Note: Every question carries 1 mark. (You can use the back of the paper for rough work.) As last time, **no need to justify your choice**, and for a multiple choice question **only one** (A, B, C or D) is correct.

• Q.1) What are the solution(s) of this homogeneous 2^{nd} order differential equation y'' - 2y' - 8y = 0?

• Q.2) For this non-homogeneous equation $y' + 4y = -x^2$, we ask the initial value y(1) = 0. Which one of these functions is a solution?

- **A)** $y(x) = -\frac{1}{4}x^2 + \frac{1}{8}x \frac{1}{32} + \frac{5}{32}e^{4-4x}$ **C)** $y(x) = -\frac{1}{2}x^2 + \frac{1}{4}x \frac{1}{16} + \frac{5}{16}e^{4(x-1)}$
- **B)** there is no solution for this initial value problem! **D)** $y(x) = 2e^{-4x}$

• Q.3) Let S be the series sum of the terms $a_n = \frac{1}{n(n+3)}$ for n > 0, ie $S = \sum_{n=1}^{+\infty} a_n = \sum_{n=1}^{+\infty} \frac{1}{n(n+3)}$. Is S convergent?

- A) No (S will be infinite = $+\infty$ because $a_n > 0$)
- **C)** Yes (obvious, just because $a_n \xrightarrow[n \to +\infty]{} 0$)

D) Yes (a series of positive terms always converges!)

B) Yes (thanks to the comparison test, the inequality $a_n < \frac{1}{n^2}$ and because $\sum_{n=1}^{+\infty} \frac{1}{n^2}$ converges)

Bonus: (for +2 marks) Can you quickly (but carefully) compute the value of the sum of the series? $\sum_{n=1}^{+\infty} \frac{1}{n(n+3)} = ?$

- Q.4) Is the real sequence u = (u_n)_{n∈ℕ} defined by u_n = ¹/_{√5} (^{1+√5}/₂)ⁿ convergent?
 A) No, u_n is not even correctly defined!
 B) No, u_n → -∞
 C) Yes, and it converges to ¹/_{√5}
 D) No, u_n → +∞
- Q.5) What are the solution(s) of this homogeneous 1^{st} order differential equation y' + 4y = 0?