Name:

Roll Number:
Section: \qquad

Note: Every question carries 1 mark. (You can use the back of the paper for rough work.)
As last time, no need to justify your choice, and for a multiple choice question only one (A, B, C or D) is correct.

- Q.1) Is the real sequence $u=\left(u_{n}\right)_{n \in \mathbb{N}}$ defined by $u_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}$ convergent?
A) No, $u_{n} \underset{n \rightarrow+\infty}{\longrightarrow}+\infty$
C) No, u_{n} is not even correctly defined!
B) Yes, and it converges to $\frac{1}{\sqrt{5}}$
D) No, $u_{n} \underset{n \rightarrow+\infty}{\longrightarrow}-\infty$
- Q.2) Let S be the series sum of the terms $a_{n}=\frac{1}{n(n+3)}$ for $n>0$, ie $S=\sum_{n=1}^{+\infty} a_{n}=\sum_{n=1}^{+\infty} \frac{1}{n(n+3)}$. Is S convergent?
A) Yes (a series of positive terms always converges!)
D) Yes (thanks to the comparison test, the inequal-
B) Yes (obvious, just because $a_{n} \xrightarrow[n \rightarrow+\infty]{ } 0$)
C) No (S will be infinite $=+\infty$ because $a_{n}>0$)
ity $a_{n}<\frac{1}{n^{2}}$ and because $\sum_{n=1}^{+\infty} \frac{1}{n^{2}}$ converges)

Bonus: (for $+\mathbf{2}$ marks) Can you quickly (but carefully) compute the value of the sum of the series?
$\sum_{n=1}^{+\infty} \frac{1}{n(n+3)}=$?

- Q.3) What are the solutions of this $1^{\text {st }}$ order differential equation $y^{\prime}+2 y=0$?
- Q.4) For this non-homogeneous equation $y^{\prime}+2 y=x^{2}$, we add the initial value $y(1)=0$. Which one of these functions is a solution?
A) $y(x)=\frac{1}{2} x^{2}-\frac{1}{2} x+2$
C) $y(x)=\frac{1}{2} x^{2}+4 \mathrm{e}^{-2 x}$
В) $y(x)=\frac{1}{2} x^{2}-\frac{1}{2} x+\frac{1}{4}-\frac{1}{4} \mathrm{e}^{2-2 x}$
D) $y(x)=\frac{1}{4}+\frac{7}{4} \mathrm{e}^{2} \mathrm{e}^{-2 x}$
- Q.5) What are the solution(s) of this homogeneous $2^{\text {nd }}$ order differential equation $y^{\prime \prime}+2 y^{\prime}-8 y=0$?

Name:

Roll Number:

Section:

\qquad

Note: Every question carries 1 mark. (You can use the back of the paper for rough work.)
As last time, no need to justify your choice, and for a multiple choice question only one (A, B, C or D) is correct.

- Q.1) What are the solution(s) of this homogeneous $2^{\text {nd }}$ order differential equation $y^{\prime \prime}-2 y^{\prime}-8 y=0$?
- Q.2) For this non-homogeneous equation $y^{\prime}+4 y=-x^{2}$, we ask the initial value $y(1)=0$. Which one of these functions is a solution?
A) $y(x)=-\frac{1}{4} x^{2}+\frac{1}{8} x-\frac{1}{32}+\frac{5}{32} \mathrm{e}^{4-4 x}$
C) $y(x)=-\frac{1}{2} x^{2}+\frac{1}{4} x-\frac{1}{16}+\frac{5}{16} \mathrm{e}^{4(x-1)}$
B) there is no solution for this initial value problem!
D) $y(x)=2 \mathrm{e}^{-4 x}$
- Q.3) Let S be the series sum of the terms $a_{n}=\frac{1}{n(n+3)}$ for $n>0$, ie $S=\sum_{n=1}^{+\infty} a_{n}=\sum_{n=1}^{+\infty} \frac{1}{n(n+3)}$. Is S convergent?
A) No (S will be infinite $=+\infty$ because $a_{n}>0$)
C) Yes (obvious, just because $a_{n} \xrightarrow[n \rightarrow+\infty]{ } 0$)
B) Yes (thanks to the comparison test, the inequal-
D) Yes (a series of positive terms always converges!) ity $a_{n}<\frac{1}{n^{2}}$ and because $\sum_{n=1}^{+\infty} \frac{1}{n^{2}}$ converges)

Bonus: (for $\mathbf{+ 2}$ marks) Can you quickly (but carefully) compute the value of the sum of the series?
$\sum_{n=1}^{+\infty} \frac{1}{n(n+3)}=$?

- Q.4) Is the real sequence $u=\left(u_{n}\right)_{n \in \mathbb{N}}$ defined by $u_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}$ convergent?
A) No, u_{n} is not even correctly defined!
C) Yes, and it converges to $\frac{1}{\sqrt{5}}$
B) No, $u_{n} \underset{n \rightarrow+\infty}{\longrightarrow}-\infty$
D) No, $u_{n} \underset{n \rightarrow+\infty}{\longrightarrow}+\infty$
- Q.5) What are the solution(s) of this homogeneous $1^{\text {st }}$ order differential equation $y^{\prime}+4 y=0$?

