For these problems, you will study the curves with as much details as possible: domain of definition, quick drawing, asymptotes, special points, singular points, double points, extrema for $x(t), y(t), \sqrt{x^{2}(t)+y^{2}(t)}$ etc.

Remark: this tutorial sheet is the last one for the MA101 course.
Ex.1) Study these parametric curves (be cautious on the domain of t):
(a) $\left\{\begin{array}{l}x(t)=t-\sin (t) \\ y(t)=1-\cos (t)\end{array}\right\}^{1}$.
(c) $\left\{\begin{array}{l}x(t)=\cos ^{3}(t) \\ y(t)\end{array}=\sin ^{3}(t) . ~ . ~\right.$.
(b) $\left\{\begin{array}{l}x(t)=\frac{4 t}{3+t^{4}} \\ y(t)=\frac{4}{\sqrt{3}} \frac{t^{3}}{3+t^{4}}\end{array}\right.$.
(d) $\left\{\begin{array}{l}x(t)=\frac{\mathrm{e}^{t}}{1+t} . \\ y(t)=\frac{t \mathrm{e}^{t}}{1+t} .\end{array}\right.$

If you are curious, you can try to look for these curves on Internet, and maybe find their names. A good website for plotting this is www.wolframalpha.com.

Ex.2) Study these polar curves (be cautious on the domain of θ):
(a) $\rho(\theta)=\cos (\theta)+\sin (2 \theta)$,
(b) $\rho(\theta)=\cos (\theta)-\cos (2 \theta)$,
(c) $\rho(\theta)=\frac{1-2 \cos (\theta)}{1+\sin (\theta)}$,
(d) $\rho(\theta)=\frac{\cos (2 \theta)}{2 \cos (\theta)-1}$,
(e) $\rho(\theta)=1+\tan \left(\frac{\theta}{2}\right)$, prove the existence of one double point on which the two tangents are orthogonal.
(f) $\rho(\theta)=\frac{1}{\sin ^{3}(\theta / 3)}$, show that one line, passing to the origin O (ie the point $(0,0) \in$ \mathbb{R}^{2}) will intersect the curve in exactly three points, and that the three tangents to the polar curve (at these points) will form a equilateral triangle.
Ex.3) Study the polar curve : $\rho(\theta)=\frac{1}{\sqrt{1+\sin (2 \theta)}+\sqrt{1-\sin (2 \theta)}}$.
First, try to do it without cheating or plotting the curve on a calculator machine or a computer.
If any interesting behavior seems to appear, try to find a way to prove it t^{2}.

[^0]
[^0]: ${ }^{1}$ Try it on Wolfram Alpha: www.wolframalpha.com/input/?i=plot ($\left.x(t)=1-\sin (t), y(t)=1-\cos (t)\right)$
 ${ }^{2}$ Here, one could try to manipulate trigonometric expressions to simplify the expression of ρ and then use Cartesian coordinates to get the final result.

