1 Some change of variable

Ex.1.1) Let $]^{1} f \in \mathcal{C}^{0}([-a, a], \mathbb{R})$ with $a>0$. With one change of variable, prove the following geometrical properties of integrals :
(i) If f is even, show that $\int_{-a}^{a} f=2 \int_{0}^{a} f$ (this is a shortcut for $\int_{-a}^{a} f(t) \mathrm{d} t$ and $\left.\int_{0}^{a} f(t) \mathrm{d} t\right)$,
(ii) If f is odd, show that $\int_{-a}^{a} f=0$.

Ex.1.2) Let $a>0$, compute $\int_{0}^{x} \frac{1}{a^{2}+u^{2}} \mathrm{~d} u$ for all $x>0$. (Remember that we know how to integrate the function $x \mapsto \frac{1}{1+x^{2}}$.)

Ex.1.3) For $a, b \in \mathbb{R}, a<b$, compute $\int_{a}^{b}(t-a)^{3}(b-t)^{3} \mathrm{~d} t$.
Ex.1.4) Find one primitive of the function $f: x \mapsto \frac{\cosh (x)}{\sinh ^{4}(x)}$ thanks to a change of variable $u=\sinh (x)$ (of course by carefully saying on which interval you work).

Ex.1.5) (i) For an interval of the form $\int_{a}^{b} f\left(x^{n}\right) \frac{\mathrm{d} x}{x}$ (for $0<a<b$), one could remark that the change of variable $u=x^{n}$ is interesting.
(ii) Compute $\int_{1}^{2} \frac{1}{x\left(1+x^{n}\right)} \mathrm{d} x$ for on $n \in \mathbb{N}^{*}$.

Ex.1.6) Remember the formula for $\cos (x), \sin (x), \tan (x)$ as a function of $\tan \left(\frac{x}{2}\right)$ (and especially the domain where they are valid). Use them to find primitives for $x \mapsto \frac{1}{\cos (x)}$ and $x \mapsto \frac{1}{\sin (x)}$, maybe with the change of variable $u=$ $\tan \left(\frac{x}{2}\right)$.

Ex.1.7) Compute one primitive of $f: x \mapsto \frac{x}{\left(1+x^{2}\right) \sqrt{1-x^{4}}}$ (on the good domain). One could try to write $x^{2}=\cos (u)$.

[^0]
2 Integration by parts, and application to compute some primitives

Ex.2.1) Compute $\int_{0}^{1} \ln \left(1+x^{2}\right) \mathrm{d} x$,
Ex.2.2) Compute $\int_{0}^{x} \arctan (t) \mathrm{d} t$ for all $x>0$,
Ex.2.3) (LeBESGUE's Lemma) Let $\square^{2} f \in \mathcal{C}^{1}([a, b], \mathbb{R})$, show that $\square^{3} \int_{a}^{b} \sin (n t) f(t) \mathrm{d} t \underset{n \rightarrow+\infty}{\rightarrow} 0$.
Ex.2.4) Compute on \rrbracket^{4} primitive of $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto\left(3 x^{2}+5 x-12\right) \cos (x)$,
Ex.2.5) Compute one primitive of $f: x \mapsto \frac{1}{\sin ^{2}(x) \cos ^{2}(x)}$ on a domain you will choose and specify,

Ex.2.6) Compute one primitive of $f: \mathbb{R}_{+}^{*} \rightarrow \mathbb{R}, x \mapsto \frac{(1-x)^{2}}{\sqrt{x}}$,
Ex.2.7) Compute one primitive of $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto \frac{1}{\left(1+x^{2}\right)^{2}}$ by integrating by parts. Bonus: One could try to prove the general case for any $\frac{1}{\left(1+x^{2}\right)^{n}}$, maybe by an induction $n \in \mathbb{N}$ (Starting from $n=0$ as always, remember that we agreed $0 \in \mathbb{N}$).

3 Other problems linking differentiation and integration

Ex.3.1) Let $a, b \in \mathbb{R}, a<b$. Prove that there is a constant $C \in \mathbb{R}$ such that :

$$
\forall f \in \mathcal{C}^{1}([a, b], \mathbb{R}), f(a)=0 \stackrel{\text { def }}{=}>\int_{a}^{b} f^{2}(t) \mathrm{d} t \leqslant C \int_{a}^{b}\left(f^{\prime}\right)^{2}(t) \mathrm{d} t
$$

[^1]Ex.3.2) Compute $I=\int_{a}^{b} \frac{\sin (x)}{\sin (x)+\cos (x)} \mathrm{d} x$ and $J=\int_{a}^{b} \frac{\cos (x)}{\sin (x)+\cos (x)} \mathrm{d} x$, by assuming $]^{5}$ that $[a, b]$ does not contain any element being equals to $-\frac{\pi}{4}$ modulus π.

Ex.3.3) Let $f \in \mathcal{C}^{2}\left(\mathbb{R}, \mathbb{R}_{+}\right)$, assume that $f^{\prime \prime}$ is bounded on \mathbb{R}. Show ${ }^{6}$ that $\forall x \in$ $\mathbb{R},\left|f^{\prime}(x)\right| \leqslant \sqrt{2| | f^{\prime \prime} \|_{\infty} f(x)}$.
Notation: $\left\|f^{\prime \prime}\right\|_{\infty}$ stands for the infinity-norm, and is defined as the maximum of $\left|f^{\prime \prime}\right|$ on \mathbb{R}.

Ex.3.4) Find all the functions. $7 f$ of $\mathbb{R} \rightarrow \mathbb{R}$ that satisfies:

$$
\forall x \in \mathbb{R}, f(x)-\int_{0}^{x}(x-t) f(t) \mathrm{d} t=x^{2}
$$

Ex.3.5) Find all the functions $f \in \mathcal{C}^{0}(\mathbb{R}, \mathbb{R})$ (ie, continuous function from \mathbb{R} to \mathbb{R}) such that $\forall x \in \mathbb{R}, \int_{0}^{x} f(t) \mathrm{d} t=f^{2}(x)$.

Ex.3.6) (About differentiation) Let $f \in \mathcal{C}^{3}(\mathbb{R}, \mathbb{R})$, and $x \in \mathbb{R}$.
Compute $\lim _{h \rightarrow 0} \frac{f(x+3 h)-3 f(x+2 h)+3 f(x+h)-f(x)}{h^{3}}$.
Bonus: Any idea of a more general result ?

4 Harder problem

Ex.4.1) Let $f \in \mathcal{C}^{0}([a, b], \mathbb{R})$ (a continuous function from an interval $[a, b]$ to \mathbb{R}).
Assume that $\forall \alpha, \beta \in[a, b], \int_{\alpha}^{\beta} f=0$ to prove that $f=0$.
Ex.4.2) (Hard) Let $f, g \in \mathcal{C}_{\mathrm{pc}}^{0}([a, b], \mathbb{R})$ be two function piecewise continuous (ie, continuous on every interval of a good partition of $[a, b])$.
Prove that $\left(\int_{a}^{b}(f+g)^{2}\right)^{\frac{1}{2}} \leqslant\left(\int_{a}^{b} f^{2}\right)^{\frac{1}{2}}+\left(\int_{a}^{b} g^{2}\right)^{\frac{1}{2}}$.

[^2]Ex.4.3) (Bonus) Compute $\rrbracket_{n>0, n \rightarrow+\infty}\left(\frac{(2 n)!}{n!n^{n}}\right)^{\frac{1}{n}}$.
Ex.4.4) (Hard) Let $f \in \mathcal{C}^{0}([a, b], \mathbb{R})$, we want to show that $\lim _{n \rightarrow+\infty}\left(\int_{a}^{b}|f|^{n}\right)^{\frac{1}{n}}=$ $\|f\|_{\infty}$.
(i) Prove existence of one $c \in[a, b]$ such that $|f(c)|=\|f\|_{\infty}$,
(ii) Let $\varepsilon>0$. Show that there is on neighborhood $[\alpha, \beta]$ on c on which $|f(x)| \geqslant| | f \|_{\infty}-\varepsilon$ for all $x \in[\alpha, \beta]$,
(iii) Then show that the sequence is lower-bounded by the sequence of general term $(\beta-\alpha)^{\frac{1}{n}}\left(\|f\|_{\infty}-\varepsilon\right)($ for $n>0)$,
(iv) Then do the same for an upper-bound, and conclude by the squeezing theorem.

Ex.4.5) (TAYLOR-LaGRANGE's Identity) Let ${ }^{9} f \in \mathcal{C}^{n}([a, b], \mathbb{R}) \cap \mathcal{D}^{n+1}((a, b), \mathbb{R})$, with $n \in \mathbb{N}^{*}$. Show ${ }^{10}$ that there is one constant $c \in(a, b)$ such that:

$$
f(b)=\sum_{k=0}^{n} f^{(k)}(a) \frac{(b-a)^{k}}{k!}+f^{(n+1)}(c) \frac{(b-a)^{n+1}}{(n+1)!} .
$$

[^3]
[^0]: ${ }^{1}$ This notation $f \in \mathcal{C}^{0}(D, \mathbb{R})$ stands for a function f, from D to \mathbb{R}, being continuous.

[^1]: ${ }^{2}$ This notation $f \in \mathcal{C}^{1}(D, \mathbb{R})$ stands for a function f, from D to \mathbb{R}, being continuous and differentiable on D, and with a first derivative also continuous.
 ${ }^{3}$ One could think to write $\sin (n t)$ as $\operatorname{Im}\left(\mathrm{e}^{i n t}\right)$ and then integrate by parts, by differentiate f (which is \mathcal{C}^{1}) and integrate $\mathrm{e}^{i n t}$ as $\frac{1}{\text { int }} \mathrm{e}^{\text {int }}+C$, if $n \neq 0$.
 ${ }^{4}$ Remember that if $F^{\prime}=f$, and $G=F+c$ for one constant $c \in \mathbb{R}$, then $G^{\prime}=f$ also!

[^2]: ${ }^{5}$ And can you justify this hypothesis?
 ${ }^{6}$ By using the TAYLOR-LAGRANGE inequality for f at the second order to find a polynomial function of degree 2 on h.
 ${ }^{7}$ One could prove that one solution of this functional equation has to be \mathcal{C}^{∞}, ie infinitely differentiable, and then that it satisfies a certain simple differential equation that you should solve.

[^3]: ${ }^{8}$ By naming u_{n} the general term of that sequence to study, define an other sequence $v=$ $\left(v_{n}\right)_{n \in \mathbb{N}}$ by $\forall n \in \mathbb{N}, v_{n}=\ln \left(u_{n}\right)$. One could then introduce a Riemann sum for v (and use the basic property of logarithms).
 ${ }^{9}$ You should start to be familiar with these notations : f is both a function of class n of $[a, b]$ and $n+1$ times differentiable on (a, b).
 ${ }^{10}$ One should use Rolle's Theorem applied to $g:[a, b] \rightarrow \mathbb{R}, x \mapsto \sum_{k=0}^{n} f^{(k)}(x) \frac{(b-a)^{k}}{k!}+$ $\frac{(b-a)^{n+1}}{(n+1)!} \lambda$, with one λ choose to have $g(a)=g(b)$.

