1 Some change of variable

- Ex.1.1) Let $f \in \mathcal{C}^0([-a, a], \mathbb{R})$ with a > 0. With one change of variable, prove the following geometrical properties of integrals :
 - (i) If f is even, show that ∫_{-a}^a f = 2 ∫₀^a f (this is a shortcut for ∫_{-a}^a f(t)dt and ∫₀^a f(t)dt),
 (ii) If f is odd, show that ∫_a^a f = 0

(ii) If f is odd, show that
$$\int_{-a} f = 0$$
.

Ex.1.2) Let a > 0, compute $\int_0^x \frac{1}{a^2 + u^2} du$ for all x > 0. (Remember that we know how to integrate the function $x \mapsto \frac{1}{1 + x^2}$.)

Ex.1.3) For $a, b \in \mathbb{R}, a < b$, compute $\int_{a}^{b} (t-a)^{3} (b-t)^{3} dt$.

- Ex.1.4) Find one primitive of the function $f: x \mapsto \frac{\cosh(x)}{\sinh^4(x)}$ thanks to a change of variable $u = \sinh(x)$ (of course by carefully saying on which interval you work).
- Ex.1.5) (i) For an interval of the form $\int_{a}^{b} f(x^{n}) \frac{\mathrm{d}x}{x}$ (for 0 < a < b), one could remark that the change of variable $u = x^{n}$ is interesting.

(ii) Compute
$$\int_{1}^{2} \frac{1}{x(1+x^{n})} dx$$
 for on $n \in \mathbb{N}^{*}$.

- Ex.1.6) Remember the formula for $\cos(x), \sin(x), \tan(x)$ as a function of $\tan\left(\frac{x}{2}\right)$ (and especially the domain where they are valid). Use them to find primitives for $x \mapsto \frac{1}{\cos(x)}$ and $x \mapsto \frac{1}{\sin(x)}$, maybe with the change of variable $u = \tan(\frac{x}{2})$.
- Ex.1.7) Compute one primitive of $f: x \mapsto \frac{x}{(1+x^2)\sqrt{1-x^4}}$ (on the good domain). One could try to write $x^2 = \cos(u)$.

Please, report any issue to MA101@crans.orlg Mahindra École Centrale, 2014

¹This notation $f \in \mathcal{C}^0(D, \mathbb{R})$ stands for a function f, from D to \mathbb{R} , being continuous.

2 Integration by parts, and application to compute some primitives

Ex.2.1) Compute $\int_{0}^{1} \ln(1+x^2) dx$, Ex.2.2) Compute $\int_{0}^{x} \arctan(t) dt$ for all x > 0,

Ex.2.3) (LEBESGUE's Lemma) Let² $f \in \mathcal{C}^1([a, b], \mathbb{R})$, show that³ $\int_{a}^{b} \sin(nt) f(t) dt \xrightarrow[n \to +\infty]{} 0$.

- Ex.2.4) Compute one⁴ primitive of $f : \mathbb{R} \to \mathbb{R}, x \mapsto (3x^2 + 5x 12)\cos(x),$
- Ex.2.5) Compute one primitive of $f: x \mapsto \frac{1}{\sin^2(x)\cos^2(x)}$ on a domain you will choose and specify,

Ex.2.6) Compute one primitive of $f : \mathbb{R}^*_+ \to \mathbb{R}, x \mapsto \frac{(1-x)^2}{\sqrt{x}}$,

Ex.2.7) Compute one primitive of $f : \mathbb{R} \to \mathbb{R}, x \mapsto \frac{1}{(1+x^2)^2}$ by integrating by parts. **Bonus:** One could try to prove the general case for any $\frac{1}{(1+x^2)^n}$, maybe by an induction $n \in \mathbb{N}$ (Starting from n = 0 as always, remember that we agreed $0 \in \mathbb{N}$).

3 Other problems linking differentiation and integration

Ex.3.1) Let $a, b \in \mathbb{R}, a < b$. Prove that there is a constant $C \in \mathbb{R}$ such that :

$$\forall f \in \mathcal{C}^1([a,b],\mathbb{R}), f(a) = 0 \stackrel{\text{\tiny def}}{=} > \int_a^b f^2(t) \mathrm{d}t \leqslant C \int_a^b (f')^2(t) \mathrm{d}t.$$

³One could think to write $\sin(nt)$ as $\mathcal{I}m(e^{int})$ and then integrate by parts, by differentiate f(which is \mathcal{C}^1) and integrate e^{int} as $\frac{1}{int}e^{int} + C$, if $n \neq 0$. ⁴Remember that if F' = f, and G = F + c for one constant $c \in \mathbb{R}$, then G' = f also!

Please, report any issue to MA101@crans.o2g

²This notation $f \in \mathcal{C}^1(D,\mathbb{R})$ stands for a function f, from D to \mathbb{R} , being continuous and differentiable on D, and with a first derivative also continuous.

- Ex.3.2) Compute $I = \int_{a}^{b} \frac{\sin(x)}{\sin(x) + \cos(x)} dx$ and $J = \int_{a}^{b} \frac{\cos(x)}{\sin(x) + \cos(x)} dx$, by assuming⁵ that [a, b] does not contain any element being equals to $-\frac{\pi}{4}$ modulus π .
- Ex.3.3) Let $f \in C^2(\mathbb{R}, \mathbb{R}_+)$, assume that f'' is bounded on \mathbb{R} . Show⁶ that $\forall x \in \mathbb{R}, |f'(x)| \leq \sqrt{2||f''||_{\infty}f(x)}$. <u>Notation:</u> $||f''||_{\infty}$ stands for the *infinity-norm*, and is defined as the maximum of |f''| on \mathbb{R} .
- Ex.3.4) Find all the functions⁷ f of $\mathbb{R} \to \mathbb{R}$ that satisfies:

$$\forall x \in \mathbb{R}, f(x) - \int_0^x (x-t)f(t)dt = x^2.$$

- Ex.3.5) Find all the functions $f \in C^0(\mathbb{R}, \mathbb{R})$ (ie, continuous function from \mathbb{R} to \mathbb{R}) such that $\forall x \in \mathbb{R}, \int_0^x f(t) dt = f^2(x)$.
- Ex.3.6) (About differentiation) Let $f \in C^3(\mathbb{R}, \mathbb{R})$, and $x \in \mathbb{R}$. Compute $\lim_{h \to 0} \frac{f(x+3h) - 3f(x+2h) + 3f(x+h) - f(x)}{h^3}$. Bonus: Any idea of a more general result ?

4 Harder problem

- Ex.4.1) Let $f \in \mathcal{C}^0([a, b], \mathbb{R})$ (a continuous function from an interval [a, b] to \mathbb{R}). Assume that $\forall \alpha, \beta \in [a, b], \int_{\alpha}^{\beta} f = 0$ to prove that f = 0.
- Ex.4.2) (Hard) Let $f, g \in C^0_{pc}([a, b], \mathbb{R})$ be two function piecewise continuous (ie, continuous on every interval of a good partition of [a, b]).

Prove that
$$(\int_a (f+g)^2)^{\frac{1}{2}} \leq (\int_a f^2)^{\frac{1}{2}} + (\int_a g^2)^{\frac{1}{2}}$$

⁵And can you justify this hypothesis ?

⁶By using the TAYLOR-LAGRANGE inequality for f at the second order to find a polynomial function of degree 2 on h.

⁷One could prove that one solution of this functional equation has to be \mathcal{C}^{∞} , ie infinitely differentiable, and then that it satisfies a certain *simple* differential equation that you should solve.

Ex.4.3) (Bonus) Compute⁸ $\lim_{n>0,n\to+\infty} \left(\frac{(2n)!}{n!n^n}\right)^{\frac{1}{n}}$.

- Ex.4.4) (Hard) Let $f \in \mathcal{C}^0([a,b],\mathbb{R})$, we want to show that $\lim_{n \to +\infty} \left(\int^b |f|^n \right)^{\overline{n}} =$ $||f||_{\infty}$.
 - (i) Prove existence of one $c \in [a, b]$ such that $|f(c)| = ||f||_{\infty}$,
 - (ii) Let $\varepsilon > 0$. Show that there is on neighborhood $[\alpha, \beta]$ on c on which $|f(x)| \ge ||f||_{\infty} - \varepsilon$ for all $x \in [\alpha, \beta]$,
 - (iii) Then show that the sequence is lower-bounded by the sequence of general term $(\beta - \alpha)^{\frac{1}{n}}(||f||_{\infty} - \varepsilon)$ (for n > 0),
 - (iv) Then do the same for an upper-bound, and conclude by the squeezing theorem.
- Ex.4.5) (TAYLOR-LAGRANGE's Identity) Let⁹ $f \in \mathcal{C}^n([a, b], \mathbb{R}) \cap \mathcal{D}^{n+1}((a, b), \mathbb{R})$, with $n \in \mathbb{N}^*$. Show¹⁰ that there is one constant $c \in (a, b)$ such that :

$$f(b) = \sum_{k=0}^{n} f^{(k)}(a) \frac{(b-a)^k}{k!} + f^{(n+1)}(c) \frac{(b-a)^{n+1}}{(n+1)!}.$$

¹⁰One should use ROLLE's Theorem applied to $g: [a,b] \to \mathbb{R}, x \mapsto \sum_{k=0}^{n} f^{(k)}(x) \frac{(b-a)^k}{k!} +$ $\frac{(b-a)^{n+1}}{(n+1)!}\lambda$, with one λ choose to have g(a) = g(b).

Please, report any issue to MA101@crans.orfg Mahindra École Centrale, 2014

⁸By naming u_n the general term of that sequence to study, define an other sequence v = $(v_n)_{n\in\mathbb{N}}$ by $\forall n\in\mathbb{N}, v_n=\ln(u_n)$. One could then introduce a RIEMANN sum for v (and use the basic property of logarithms).

⁹You should start to be familiar with these notations : f is both a function of class n of [a, b]and n+1 times differentiable on (a, b).