For these problems, a and b are real numbers, satisying $a<b$. In any case, you should be able to quickly justify the existence of any integrals that you write. Every integrals!

Ex.1) Study the limit (for $n \rightarrow+\infty$) of these sequences of general term I_{n}, J_{n}, K_{n} and $L_{n}($ defined for any $n \in \mathbb{N})$:
(i) $I_{n}=\int_{0}^{1} \frac{x^{n}}{1+x^{3}} \mathrm{~d} x$,
(iii) $K_{n}=\int_{0}^{n} \frac{\sin (n x)}{n^{2}+x^{4}} \mathrm{~d} x$,
(ii) $J_{n}=\frac{1}{n!} \int_{0}^{1}(\arcsin (x))^{n} \mathrm{~d} x$,
(iv) $L_{n}=\int_{0}^{n^{2}} \frac{\sin (n x)}{n^{2}+x^{4}} \mathrm{~d} x$.

Ex.2) Comput $\underbrace{2}$ the following limits :
(i) $\lim _{x \rightarrow+\infty} \int_{x}^{x^{2}} \frac{\ln (t)}{1+t^{4}} \mathrm{~d} t$,
(ii) $\lim _{a \rightarrow 0} \int_{0}^{1} x^{3} \sqrt{1+a^{3} x^{3}} \mathrm{~d} x$.

Ex.3) Let $f \in \mathcal{C}^{0}([a, b], \mathbb{R})$. Assume $\left|\int_{a}^{b} f\right|=\int_{a}^{b}|f|$. Show ${ }^{3}$ that f keeps a constant sign on $[a, b]$.
Ex.4) Let $f \in \mathcal{C}^{0}([a, b], \mathbb{R})$. Let F be the function defined on $[a, b]$ by $F(x):=\int_{a}^{x} f(t) \mathrm{d} t$. First justify that F is well defined, and then that F is k-lipschitzian ${ }_{4}^{4}$ (for a good $k \in \mathbb{R}_{+}$to find). Is F differentiable ? If yes, what can you say about F^{\prime} ?

Ex.5) Let $f \in \mathcal{C}^{0}([0,1], \mathbb{R})$. Study $]^{5}$ the limit of the sequence of general term $I_{n}=$ $\int_{0}^{1} f\left(\frac{x}{n}\right) \mathrm{d} x$ (defined for any $n \in \mathbb{N}^{*}$). Bonus: And what if f is not continuous at 0 , at 1 ?

Ex.6) Let $I=\left(I_{n}\right)_{n \in \mathbb{N}}$ defined by : $\forall n \in \mathbb{N}, I_{n} \stackrel{\text { def }}{=} \int_{0}^{1} \frac{t^{n}}{1+t} \mathrm{~d} t$.
(i) Justify the existence and then compute the limit $\lim _{n \rightarrow+\infty} I_{n}$,
(ii) Find a simple recurrence relation between I_{n+1} and I_{n} (for any $n \in \mathbb{N}$),

[^0](iii) And now let $S=\left(S_{n}\right)_{n \in \mathbb{N}^{*}}$ defined by : $\forall n \in \mathbb{N}^{*}, S_{n}=1-\frac{1}{2}+\frac{1}{3}-\cdots+$ $\frac{(-1)^{n+1}}{n}=\sum_{k=1}^{n} \frac{(-1)^{k+1}}{k}$. Use I to simplify S,
(iv) Conclude that this sequence S is converging and compute its limit.

Ex.7) Let $f \in \mathcal{C}^{0}([0,1], \mathbb{R})$. Compute ${ }^{6}$ the limit of the sequence $I_{n} \stackrel{\text { def }}{=} n \int_{0}^{1} x^{n} f(x) \mathrm{d} x$ (defined for any $n \in \mathbb{N}$).

Ex.8) Let $\left(f_{n}\right)_{n \in \mathbb{N}}$ a sequence of continuous functions on $[a, b]$. Assume that $\lim _{n \rightarrow+\infty} \int_{a}^{b}\left(f_{n}(x)\right)^{4} \mathrm{~d} x=$ 0. Show $\sqrt[7]{\text { that }} \lim _{n \rightarrow+\infty} \int_{a}^{b} f_{n}(x) \mathrm{d} x=0$.

Ex.9) Let $f \in \mathcal{D}^{1}([a, b], \mathbb{R})$. Assume that $|f|^{\prime}$ is upper-bounded on $[a, b]$ by some constant $M \in \mathbb{R}_{+}$, and that $f(a)=f(b)=0$. Show that $\left|\int_{a}^{b} f\right| \leqslant \frac{(b-a)^{2}}{4} M$.

Ex.10) Let $f \in \mathcal{C}^{1}([0,1], \mathbb{R})$. Prove that $\lim _{n>0, n \rightarrow+\infty} \sum_{k=0}^{n-1}\left(f\left(\frac{2 k+1}{2 n}\right)-f\left(\frac{k}{n}\right)\right)=\frac{f(1)-f(0)}{2}$.
Ex.11) Compute the limit $\lim _{n \rightarrow+\infty} \sum_{k=1}^{n} \frac{n+k}{n^{2}+k^{2}}$.
Ex.12) Prove that $\sum_{k=1}^{n} \frac{\mathrm{e}^{-n / k}}{k^{2}} \underset{n \rightarrow+\infty}{\sim} \frac{1}{\mathrm{e} n}$.
Ex.13) Let $f, g \in \mathcal{C}^{0}([0,1], \mathbb{R})$. Assume f and g to be non-negative (everywhere on $[0,1]$), and satisying $f g \geqslant 1$. Prove 8 that $\left(\int_{0}^{1} f\right) \times\left(\int_{0}^{1} g\right) \geqslant 1$ (as always \times stands for a product).

Ex.14) Let $f \in \mathcal{C}^{0}([a, b], \mathbb{C})$ (warning, f takes complex values). Assume $\left|\int_{a}^{b} f\right|=\int_{a}^{b}|f|$. Show that argument of $f(\arg (f))$ is constant (where f is not zero).

[^1]Ex.15) Let $f \in \mathcal{C}^{0}([a, b], \mathbb{R})$ such that $\int_{0}^{1} f(t) \mathrm{d} t=\int_{0}^{1} t f(t) \mathrm{d} t=\int_{0}^{1} t^{2} f(t) \mathrm{d} t=0$. Prove ${ }^{9}$ that f has at least three real zeros on $[0,1]$. Can f have more than three zeros

Ex.16) Let $f \in \mathcal{C}^{0}([0,1], \mathbb{R})$ such that $\forall n \in \mathbb{N}, \int_{0}^{1} t^{n} f(t) \mathrm{d} t=0$. Prove that $f=0$ (which is, the constant function always equals to 0).
One could either use the dominated convergence theorem of RiEmANn, or follow these ideas.
You can prove by contradiction, assume that there is $a<b$ such that $f \geqslant \eta>0$ on $[a, b]$, for one η small enough (if f is always negative, change from f to $-f$!). Then find a polynomial function which is zero at a and at b, greater than 0 on (a, b), and of absolute value strictly smaller than 1 otherwise (ie on $[0,1] \backslash[a, b]=$ $[0, a) \cup(b, 1])$.
By looking to the successive powers of this polynomial, multiplicated by f, use the hypothesis on f to conclude.

[^2]
[^0]: ${ }^{1}$ For the second one J_{n}, you should find a rough upper-bound for arcsin, and for the last one L_{n}, one could split in half, by using the previous one.
 ${ }^{2}$ For the first one, one could find an upper-bound for the quantity under the integral by some quantity which no longer depend on x, and then study the limit; for the second one, one could find lower and upper bounds for $\sqrt{1+a^{3} x^{3}}$ by some quantity without x and then compute the two integrals.
 ${ }^{3}$ One could consider the sign of $\int_{a}^{b} f$ and consider two cases.
 ${ }^{4}$ Remember that this means $:|F(x)-F(y)| \leqslant k|x-y|$ for any $x, y \in[a, b]$.
 ${ }^{5}$ One could compare that integral with a simpler one like $\int_{0}^{1} f(0) \mathrm{d} x$.

[^1]: ${ }^{6}$ One could try to guess the limit by considering some examples, and then study the difference between the sequence and this limit, which can be written as a integral (cf. Ex.5).
 ${ }^{7}$ One could start to show that $\lim _{n \rightarrow+\infty} \int_{\Omega}^{b}\left(f_{n}(x)\right)^{2} \mathrm{~d} x=0$.
 ${ }^{8}$ You could be inspired by our friends Augustin Louis C. and Hermann Amandus S.

[^2]: ${ }^{9}$ One could prove by contradiction : if f have more than 2 zeros, and then find one polynomial function P of degree greater or equal than 2 , such that $P(f(x)) \geqslant 0, \forall x \in[a, b]$ and finally conclude that something is wrong.

