For these problems, a and b are real numbers, satisfying a < b. In any case, you should be able to quickly justify the *existence* of any integrals that you write. **Every** integrals !

Ex.1) Study¹ the limit (for $n \to +\infty$) of these sequences of general term I_n, J_n, K_n and L_n (defined for any $n \in \mathbb{N}$) :

(i)
$$I_n = \int_0^1 \frac{x^n}{1+x^3} dx$$
, (iii) $K_n = \int_0^n \frac{\sin(nx)}{n^2+x^4} dx$,
(ii) $J_n = \frac{1}{n!} \int_0^1 (\arcsin(x))^n dx$, (iv) $L_n = \int_0^{n^2} \frac{\sin(nx)}{n^2+x^4} dx$.

Ex.2) Compute² the following limits :

(i)
$$\lim_{x \to +\infty} \int_{x}^{x^{2}} \frac{\ln(t)}{1+t^{4}} dt$$
, (ii) $\lim_{a \to 0} \int_{0}^{1} x^{3} \sqrt{1+a^{3}x^{3}} dx$.

- Ex.3) Let $f \in \mathcal{C}^0([a,b],\mathbb{R})$. Assume $\left| \int_a^b f \right| = \int_a^b |f|$. Show³ that f keeps a constant sign on [a, b].
- Ex.4) Let $f \in \mathcal{C}^0([a,b],\mathbb{R})$. Let F be the function defined on [a,b] by $F(x) := \int^x f(t) dt$. First justify that F is well defined, and then that F is k-lipschitzian⁴ (for a good $k \in \mathbb{R}_+$ to find). Is F differentiable ? If yes, what can you say about F' ?
- Ex.5) Let $f \in \mathcal{C}^0([0,1],\mathbb{R})$. Study⁵ the limit of the sequence of general term $I_n =$ $\int_0^1 f(\frac{x}{n}) dx \text{ (defined for any } n \in \mathbb{N}^*\text{). Bonus: And what if } f \text{ is not continuous at } 0, \text{ at } 1 ?$

Ex.6) Let $I = (I_n)_{n \in \mathbb{N}}$ defined by : $\forall n \in \mathbb{N}, I_n \stackrel{\text{def}}{=} \int_0^1 \frac{t^n}{1+t} dt$.

- (i) Justify the existence and then compute the limit $\lim_{n \to +\infty} I_n$,
- (ii) Find a simple recurrence relation between I_{n+1} and I_n (for any $n \in \mathbb{N}$),

³One could consider the sign of $\int_{a}^{b} f$ and consider two cases. ⁴Remember that this means : $|F(x) - F(y)| \leq k|x - y|$ for any $x, y \in [a, b]$.

⁵One could compare that integral with a simpler one like $\int_{0}^{1} f(0) dx$.

Please, report any issue to MA101@crans.org 1

¹For the second one J_n , you should find a rough upper-bound for arcsin, and for the last one L_n , one could split in half, by using the previous one.

 $^{^{2}}$ For the first one, one could find an upper-bound for the quantity under the integral by some quantity which no longer depend on x, and then study the limit; for the second one, one could find lower and upper bounds for $\sqrt{1 + a^3 x^3}$ by some quantity without x and then compute the two integrals.

- (iii) And now let $S = (S_n)_{n \in \mathbb{N}^*}$ defined by : $\forall n \in \mathbb{N}^*, S_n = 1 \frac{1}{2} + \frac{1}{3} \dots + \frac{(-1)^{n+1}}{n} = \sum_{k=1}^n \frac{(-1)^{k+1}}{k}$. Use *I* to simplify *S*,
- (iv) Conclude that this sequence S is converging and compute its limit.
- Ex.7) Let $f \in \mathcal{C}^0([0,1],\mathbb{R})$. Compute⁶ the limit of the sequence $I_n \stackrel{\text{def}}{=} n \int_0^1 x^n f(x) dx$ (defined for any $n \in \mathbb{N}$).
- Ex.8) Let $(f_n)_{n \in \mathbb{N}}$ a sequence of continuous functions on [a, b]. Assume that $\lim_{n \to +\infty} \int_a^b (f_n(x))^4 dx = 0$. 0. Show⁷ that $\lim_{n \to +\infty} \int_a^b f_n(x) dx = 0$.

Ex.9) Let $f \in \mathcal{D}^1([a, b], \mathbb{R})$. Assume that |f|' is upper-bounded on [a, b] by some constant $M \in \mathbb{R}_+$, and that f(a) = f(b) = 0. Show that $\left| \int_a^b f \right| \leq \frac{(b-a)^2}{4} M$.

Ex.10) Let $f \in \mathcal{C}^1([0,1],\mathbb{R})$. Prove that $\lim_{n>0,n\to+\infty} \sum_{k=0}^{n-1} \left(f(\frac{2k+1}{2n}) - f(\frac{k}{n}) \right) = \frac{f(1) - f(0)}{2}$.

Ex.11) Compute the limit
$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{n+k}{n^2+k^2}$$
.

Ex.12) Prove that
$$\sum_{k=1}^{n} \frac{\mathrm{e}^{-n/k}}{k^2} \underset{n \to +\infty}{\sim} \frac{1}{\mathrm{e}n}$$
.

- Ex.13) Let $f, g \in \mathcal{C}^0([0, 1], \mathbb{R})$. Assume f and g to be non-negative (everywhere on [0, 1]), and satisying $fg \ge 1$. Prove⁸ that $(\int_0^1 f) \times (\int_0^1 g) \ge 1$ (as always \times stands for a product).
- Ex.14) Let $f \in \mathcal{C}^0([a, b], \mathbb{C})$ (warning, f takes complex values). Assume $\left| \int_a^b f \right| = \int_a^b |f|$. Show that argument of f (arg(f)) is constant (where f is not zero).

⁷One could start to show that $\lim_{n \to +\infty} \int_a^b (f_n(x))^2 dx = 0.$

 $^{^{6}}$ One could try to guess the limit by considering some examples, and then study the difference between the sequence and this limit, which can be written as a integral (cf. Ex.5)).

⁸You could be inspired by our friends Augustin Louis C. and Hermann Amandus S..

Ex.15) Let $f \in \mathcal{C}^0([a,b],\mathbb{R})$ such that $\int_0^1 f(t)dt = \int_0^1 tf(t)dt = \int_0^1 t^2 f(t)dt = 0$. Prove⁹ that f has at least three real zeros on [0,1]. Can f have more than three zeros ?

Ex.16) Let $f \in \mathcal{C}^0([0,1],\mathbb{R})$ such that $\forall n \in \mathbb{N}, \int_0^1 t^n f(t) dt = 0$. Prove that f = 0 (which is, the constant function always equals to 0).

One could either use the *dominated convergence theorem of* RIEMANN, or follow these ideas.

You can prove by contradiction, assume that there is a < b such that $f \ge \eta > 0$ on [a, b], for one η small enough (if f is always negative, change from f to -f !). Then find a polynomial function which is zero at a and at b, greater than 0 on (a, b), and of absolute value strictly smaller than 1 otherwise (ie on $[0, 1] \setminus [a, b] =$ $[0, a) \cup (b, 1]$).

By looking to the successive powers of this polynomial, multiplicated by f, use the hypothesis on f to conclude.

Please, report any issue to MA101@crans.org 3

⁹One could prove by contradiction : if f have more than 2 zeros, and then find one polynomial function P of degree greater or equal than 2, such that $P(f(x)) \ge 0, \forall x \in [a, b]$ and finally conclude that something is wrong.