Ex.1) Prove these inequalities:
(i) $\forall x \in \mathbb{R}_{+}, x-\frac{x^{3}}{6} \leqslant \sin (x) \leqslant x$, and $1-\frac{x^{2}}{2} \leqslant \cos (x) \leqslant 1-\frac{x^{2}}{2}+\frac{x^{4}}{2}$.
(ii) $\forall x \in \mathbb{R}, x-\frac{x^{2}}{2} \leqslant \ln (1+x) \leqslant x$.
(iii) $\forall x \in\left(0, \frac{\pi}{2}\right), 2 x<\sin (2 x)+\tan (x)$.
(iv) $\forall x \in\left(0, \frac{\pi}{2}\right), \tan (x)<x+\frac{x^{3}}{3}$.
(v) $\forall x \in \mathbb{R}_{+} \backslash\{1\}, \frac{\ln (x)}{x-1}<\frac{1}{\sqrt{x}}$.

Ex.2) Show that these two functions are infinitely differentiable (ie, of class \mathcal{C}^{∞}):

Ex.3) Study these sequences $\left(u_{n}\right)_{n \in \mathbb{N}}$ and $\left(v_{n}\right)_{n \in \mathbb{N}}$ defined by these recurrence relations, on the interesting interval (that you have to specify), and maybe with a discussion on the first terms u_{0}, v_{0} :
(a) $\forall n \in \mathbb{N}, u_{n+1}=\sqrt{6+u_{n}}, v_{n+1}=\sqrt{6-v_{n}}$.
(b) $\forall n \in \mathbb{N}, u_{n+1}=\frac{4 u_{n}+2}{u_{n}+5}, v_{n+1}=1+\frac{1}{v_{n}}$.
(c) $\forall n \in \mathbb{N}, u_{n+1}=\cos \left(u_{n}\right), v_{n+1}=\left(1-v_{n}\right)^{2}$.
(d) $\forall n \in \mathbb{N}, u_{n+1}=1+\frac{1}{u_{n}^{2}-1}, v_{n+1}=\frac{v_{n}}{1+v_{n}}$.
(e) $\forall n \in \mathbb{N}, u_{n+1}=\frac{\sqrt{u_{n}}}{\sqrt{u_{n}}+\sqrt{1-u_{n}}}$.

Ex.4) Does the sum, the product and the composition of two convex functions are still convex ? (As always, give one proof in the general case if you think it is true, or one counter-example if you think it is false.)

Ex.5) Let $n \in \mathbb{N}^{*}$ and $\left(x_{i}\right)_{i \in[1 \ldots n]}$ being n positive real numbers.
(a) Show that:

$$
\frac{n}{\frac{1}{x_{1}}+\cdots+\frac{1}{x_{n}}} \leqslant\left(x_{1} \ldots x_{n}\right)^{\frac{1}{n}} \leqslant \frac{x_{1}+\cdots+x_{n}}{n} \leqslant \frac{1}{\sqrt{n}} \sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}
$$

(b) Study the equality cases in every of these 3 inequalities.
(c) Usually, these two first inequalities are written "HM $\leqslant \mathrm{GM} \leqslant \mathrm{AM}$ ", where "HM" stands for the hypergeometric mean $\left(=\frac{n}{\frac{1}{x_{1}}+\cdots+\frac{1}{x_{n}}}\right)$, "GM" is the geometric mean $\left(=\left(x_{1} \ldots x_{n}\right)^{\frac{1}{n}}\right)$, and "AM" is the arithmetic mean $\left(=\frac{x_{1}+\cdots+x_{n}}{n}\right)$.
(d) Is there existence (and unity) of some real numbers $\left(x_{i}\right)_{i \in[1 \ldots n]}=\left(x_{1}, \ldots, x_{n}\right)$ such that all these inequalities are all equalities?

Ex.6) Let $f \in \mathcal{F}(\mathbb{R}, \mathbb{R})$ be a convex function of the real variable. Show that :
(a) If f tends to 0 at $+\infty$, then f is non-positive,
(b) If f is non-decreasing and non constant, then f tends to $+\infty$ at $+\infty$,

Bonus: Find an example of a good convex function for these two cases.
Ex.7) Let $f \in \mathcal{C}^{0}([0,1], \mathbb{R})$, differentiable on $] 0,1\left[\right.$, such that $f(0)=0$ and $f(1) f^{(1)}<$ 0 . Show that f^{\prime} will have at least on zero $] 0,1[$.

Ex.8) Let $f \in \mathcal{D}^{1}\left(\mathbb{R}_{+}, \mathbb{R}\right)$ such that $f(0)=f^{\prime}(0)=f(1)=0$. Show that there is (at least) one point M of the curve Γ_{f} representing f, other than the origin $(0,0)$, such that the tangent to the curve at M will pass by the origin (a drawing is almost necessary for this problem).

Ex.9) Let $f \in \mathcal{D}^{2}(\mathbb{R}, \mathbb{R})$, and assume that it have a finite limit at $-\infty$ and $+\infty$. Show that $f^{\prime \prime}$ at least one zero.

Ex.10) (Two classic inequalities) Let $n \in \mathbb{N}^{*},\left(x_{i}\right)_{i \in[1 \ldots n]}$ and $\left(y_{i}\right)_{i \in[1 \ldots n]}$ be two families of n positive real numbers. Let p and q be two positive numbers such that $\frac{1}{p}+\frac{1}{q}=1$ (p and q are then said to be conjugated).
Show $\prod^{\mid 7}$ the following inequality, known as HÖLDER's inequality:

$$
\sum_{i=1}^{n} x_{i} y_{i} \leqslant\left(\sum_{i=1}^{n} x_{i}^{p}\right)^{\frac{1}{p}}\left(\sum_{i=1}^{n} y_{i}^{q}\right)^{\frac{1}{q}}
$$

And then use it to show Minkowski's inequality, for one constant $r>1$:

[^0]$$
\left(\sum_{i=1}^{n}\left(x_{i}+y_{i}\right)^{r}\right)^{\frac{1}{r}} \leqslant\left(\sum_{i=1}^{n} x_{i}^{r}\right)^{\frac{1}{r}}+\left(\sum_{i=1}^{n} y_{i}^{r}\right)^{\frac{1}{r}} .
$$

Bonus: As always, you can try to find out when these inequalities are equalities.

[^0]: ${ }^{1}$ One could use the convexity of $x \mapsto x^{p}$.

