Remark: For all these differential equations, the variable is always x, with $x \in I$ (and with I being an interval), and the unknown is y, a continuous and once differentiable function, of differential being continuous on I (ie y is of class \mathcal{C}^{1}).
And, of course, if the equation have one term in $y^{\prime \prime}$, then y is assumed to be of class \mathcal{C}^{2} (twice differentiable, of second derivative being continuous).
(Warning: a couple of small typing mistakes were in that document, they are indicated here in red.)

1 First order linear differential equations

Ex.1.1) Solve the following differential equations (on the correct interval, or intervals):
(a) $y^{\prime}+3 y=x^{2}-4 x-2$,
(b) $y^{\prime}+y=\frac{1}{1+\mathrm{e}^{x}}$,
(c) $y^{\prime} \cdot \sin (x)-y \cdot \cos (x)+1=0$,
(d) $2 x \cdot y^{\prime}+y=x^{n}$, with one $n \in \mathbb{N}$,
(e) $|x| \cdot y^{\prime}+(x-1) \cdot y=x^{2}$,
(f) $x\left(x^{2}-1\right) y^{\prime}+2 y=x^{2}$. You could try to find three real numbers a, b, c such that ${ }^{1} \frac{1}{x\left(x^{2}-1\right)}=\frac{a}{x}+\frac{b}{x-1}+\frac{c}{x+1}$.
(g) $(x \ln (x)) \cdot y^{\prime}-y=-\frac{1}{x}(\ln (x)+1)$.

Ex.1.2) Without trying to solve the differential equation, determine one interval in which the solution of the given problem is certain to exists L^{2}.
(a) $\ln (x) y^{\prime}+y=\cot (x)$, with the initial value being $y(2)=3$.
(b) $y^{\prime}+\tan (x) y=\sin (x)$, with the initial value being $y(\pi)=0$.

Ex.1.3) (Variation of parameters) If P and Q are real-valued continuous functions defined on a interval I, consider (E) the following differential equation (same notation as the one used in class):

$$
y^{\prime}+P(x) y=Q(x), y\left(x_{0}\right)=y_{0}
$$

(a) If $Q(x)=0$ on I, we know ${ }^{3}$ that any solution of (E) will be written as $y(x)=B \exp (-A(x))$ for all $x \in I$, (where $A(x)=\int_{x_{0}}^{x} P(t) \mathrm{d} t$ and B is some real constant).

[^0](b) But now, if Q is not identically equal to 0 , assume that $y(x)=B(x) \exp (-A(x))$ (with the same $A(x))$ is a solution of $(E)(B(x)$ is now a function, and not only a constant $B \in \mathbb{R}$: the process is called the variation of the parameter, or variation of the constant). Then find what condition this function $B: x \mapsto B(x)$ has to verify for y to be a solution of (E). Can you find the expression of $B(x)$ (without trying to compute it)?

Ex.1.4) Find the unique solution of the following differential equations (and try to justify why are they unique):
(a) $x y^{\prime}-2 y=4 x^{3} \sqrt{y}$, with the initial value being $y(1)=0$. Introducing $z=\sqrt{y}$ could be useful.
(b) $y^{\prime}=2 x y^{2}+(1-4 x) y+2 x-1$. One could remark that the function y : $x \mapsto y(x)=1$ is a constant solution, and introducing a function z such that $y=1+\frac{1}{z}$ could be useful.

2 Second order linear differential equations

Ex.2.1) Solve the following differential equations (on the correct interval, or intervals):
(a) $y^{\prime \prime}+y^{\prime}-6 y=15 x^{2}-4 x-3$,
(b) $y^{\prime \prime}+y^{\prime}=x^{4}-8 x^{3}+7 x^{2}-5 x$,
(c) $y^{\prime \prime}+4 y=3+3 x$,
(d) $y^{\prime \prime}+3 y^{\prime}+2 y=\mathrm{e}^{x}$,
(e) $y^{\prime \prime}+3 y^{\prime}+2 y=\mathrm{e}^{-x}$,
(f) $y^{\prime \prime}-3 y^{\prime}+2 y=\left(-3 x^{2}+10 x-7\right) \mathrm{e}^{x}$,
(g) $y^{\prime \prime}+4 y^{\prime}+4 y=\left(16 x^{2}+16 x-14\right) \mathrm{e}^{x}$,
(h) $y^{\prime \prime}+y^{\prime}-2 y=8 \sin (2 x)$,
(i) $y^{\prime \prime}-5 y^{\prime}+6 y=\frac{\cosh ^{2}(x)}{\mathrm{e}^{x}}$,
(j) $y^{\prime \prime}-2 y^{\prime}+5 y=-4 \mathrm{e}^{-x} \cos (x)+7 \mathrm{e}^{-x} \sin (x)-4 \mathrm{e}^{x} \sin (2 x)$,
(k) $y^{\prime \prime}+\omega^{2} y=x \sin (2 x)$, with some $\omega>0$ being fixed.

Ex.2.2) Solve the following differential equation (on the correct interval, or intervals):

$$
(1+x)^{2} y^{\prime \prime}+(1+x) y^{\prime}-2=0
$$

Ex.2.3) By introducing the new variable $z=x y$, solve the following differential equation:

$$
x y^{\prime \prime}+2(x+1) y^{\prime}+(x+2) y=0
$$

(Warning: it was $2(x-1)$ in the sheet, sorry about the typo!)

Ex.2.4) Let (E) be the following DE: $a x^{2} y^{\prime \prime}+b x y^{\prime}+c y=0$, where a, b, c are three real numbers such that $a>0$ and $b>0$.
(a) By writing $z(t)=y\left(\mathrm{e}^{t}\right)$, show that y is solution (on $\left.\mathbb{R}_{+}^{*}=\right] 0,+\infty[$) of the original $\mathrm{DE}(E)$ if and only if z is solution of another second order DE with constant coefficient that you shall specify.
(b) Give the forme of the solutions for this $\operatorname{DE}(E)$ on \mathbb{R}_{+}^{*} (and on \mathbb{R}_{-}^{*})?
(c) Example: Solve $x^{2} y^{\prime \prime}-x y^{\prime}+y=0$.

Ex.2.5) Consider that differential equation $\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+y=0$.
(a) Solve it on $(-1,1)$, by using the change of variable $x=\cos (t)$. (Warning: it was $\sin (t)$ in the sheet, sorry about the typo!)
(b) Then solve it on all the other possible intervals.

Hint: for one $k \in \mathbb{Z}$, work on the interval $I_{k}=(2 k+1,2 k+3)$, on which the change of variable $x=2 k+2+\cos (t)$ works exactly as on $(-1,1)$ (in the previous question).
(c) And finally what about the global solutions ? (a global solution will be a solution on every intervals I_{k} for each $k \in \mathbb{Z}$, plus it has to be continuous and differentiable at every points $\left.x_{k}=2 k+1\right)$.
(d) At the end, how many constants (C or C_{1}, C_{2}) do you have in the expression of the general solution? Is it weird to not find two constants? Why?

3 Other problems

Ex.3.1) (A small problem on integration methods.) Compute these integrals by using the good change of variable:
(a) $\int_{a}^{b} \sin ^{4}(x) \cos (x) \mathrm{d} x$, if $a, b \in \mathbb{R}$ are such that $a<b$,
(b) $\int_{0}^{1} \sqrt{1+t^{2}} \mathrm{~d} t$.

Ex.3.2) (Delicate) Find all the functions f, twice differentiable, from \mathbb{R} to \mathbb{R} such that:

$$
\begin{equation*}
\forall x, y \in \mathbb{R}, f(x+y)+f(x-y)=2 f(x) f(y) . \tag{3.1}
\end{equation*}
$$

Hint: first, $f(x)=0$ is a solution, so after we can assume f to not be zero everywhere. So $f(0)=1$.

Then, differentiate that relation 3.1 twice, first with y being a constant and differentiate in respect to x, then x is a constant and differentiate in respect to y. You should find a simple differential equation of the second order satisfied by f.

[^0]: ${ }^{1}$ This kind of simplification is called a Partial fraction decomposition.
 ${ }^{2}$ By using what has been seen in class about the existence - and uniqueness - of a solution to a linear first-order differential equation.
 ${ }^{3}$ It has been seen in class on Thursday the $6^{\text {th }}$ of November.

