Remark: For all these differential equations, the *variable* is always x, with $x \in I$ (and with I being an interval), and the *unknown* is y, a continuous and once differentiable function, of differential being continuous on I (ie y is of class C^1).

And, of course, if the equation have one term in y'', then y is assumed to be of class C^2 (twice differentiable, of second derivative being continuous).

(Warning: a couple of small typing mistakes were in that document, they are indicated here in red.)

1 First order linear differential equations

Ex.1.1) Solve the following differential equations (on the correct interval, or intervals):

(a)
$$y' + 3y = x^2 - 4x - 2$$
,
(b) $y' + y = \frac{1}{1 + e^x}$,
(c) $y' \cdot \sin(x) - y \cdot \cos(x) + 1 = 0$,
(d) $2x \cdot y' + y = x^n$, with one $n \in \mathbb{N}$,
(e) $|x| \cdot y' + (x - 1) \cdot y = x^2$,
(f) $x(x^2 - 1)y' + 2y = x^2$. You could try to find three real numbers a, b, c such that $\frac{1}{x(x^2 - 1)} = \frac{a}{x} + \frac{b}{x - 1} + \frac{c}{x + 1}$.

(g)
$$(x\ln(x)).y' - y = -\frac{1}{x}(\ln(x) + 1).$$

- Ex.1.2) Without trying to solve the differential equation, determine one interval in which the solution of the given problem is certain to exists².
 - (a) $\ln(x)y' + y = \cot(x)$, with the initial value being y(2) = 3.

(b) $y' + \tan(x)y = \sin(x)$, with the initial value being $y(\pi) = 0$.

Ex.1.3) (Variation of parameters) If P and Q are real-valued continuous functions defined on a interval I, consider (E) the following differential equation (same notation as the one used in class):

$$y' + P(x)y = Q(x), y(x_0) = y_0$$

(a) If Q(x) = 0 on I, we know³ that any solution of (E) will be written as $y(x) = B \exp(-A(x))$ for all $x \in I$, (where $A(x) = \int_{x_0}^x P(t) dt$ and B is some real constant).

Please, report any issue to MA101@crans.org 1

 $^{^{1}}$ This kind of simplification is called a *Partial fraction decomposition*.

 $^{^{2}}$ By using what has been seen in class about the existence – and uniqueness – of a solution to a linear first-order differential equation.

 $^{^{3}}$ It has been seen in class on Thursday the 6^{th} of November.

- (b) But now, if Q is not identically equal to 0, assume that y(x) = B(x) exp(-A(x)) (with the same A(x)) is a solution of (E) (B(x) is now a function, and not only a constant B ∈ ℝ: the process is called the variation of the parameter, or variation of the constant). Then find what condition this function B : x → B(x) has to verify for y to be a solution of (E). Can you find the expression of B(x) (without trying to compute it)?
- Ex.1.4) Find the unique solution of the following differential equations (and try to justify why are they unique):
 - (a) $xy' 2y = 4x^3\sqrt{y}$, with the initial value being y(1) = 0. Introducing $z = \sqrt{y}$ could be useful.
 - (b) $y' = 2xy^2 + (1 4x)y + 2x 1$. One could remark that the function $y : x \mapsto y(x) = 1$ is a constant solution, and introducing a function z such that $y = 1 + \frac{1}{z}$ could be useful.

2 Second order linear differential equations

Ex.2.1) Solve the following differential equations (on the correct interval, or intervals):

(a) $y'' + y' - 6y = 15x^2 - 4x - 3$, (b) $y'' + y' = x^4 - 8x^3 + 7x^2 - 5x$, (c) y'' + 4y = 3 + 3x, (d) $y'' + 3y' + 2y = e^x$, (e) $y'' + 3y' + 2y = e^{-x}$, (f) $y'' - 3y' + 2y = (-3x^2 + 10x - 7)e^x$, (g) $y'' + 4y' + 4y = (16x^2 + 16x - 14)e^x$, (h) $y'' + y' - 2y = 8\sin(2x)$, (i) $y'' - 5y' + 6y = \frac{\cosh^2(x)}{e^x}$, (j) $y'' - 2y' + 5y = -4e^{-x}\cos(x) + 7e^{-x}\sin(x) - 4e^x\sin(2x)$, (k) $y'' + \omega^2 y = x\sin(2x)$, with some $\omega > 0$ being fixed.

Ex.2.2) Solve the following differential equation (on the correct interval, or intervals):

$$(1+x)^2y'' + (1+x)y' - 2 = 0.$$

Ex.2.3) By introducing the new variable z = xy, solve the following differential equation:

$$xy'' + 2(x+1)y' + (x+2)y = 0.$$

(Warning: it was 2(x-1) in the sheet, sorry about the typo!)

Please, report any issue to MA101@crans.org 2 Mahindra École Centrale, 2014

- Ex.2.4) Let (E) be the following DE: $ax^2y'' + bxy' + cy = 0$, where a, b, c are three real numbers such that a > 0 and b > 0.
 - (a) By writing $z(t) = y(e^t)$, show that y is solution (on $\mathbb{R}^*_+ =]0, +\infty[$) of the original DE (E) if and only if z is solution of another second order DE with constant coefficient that you shall specify.
 - (b) Give the forme of the solutions for this DE (E) on \mathbb{R}^*_+ (and on \mathbb{R}^*_-)?
 - (c) **Example:** Solve $x^2y'' xy' + y = 0$.

Ex.2.5) Consider that differential equation $(1 - x^2)y'' - xy' + y = 0$.

- (a) Solve it on (-1, 1), by using the change of variable $x = \cos(t)$. (Warning: it was $\sin(t)$ in the sheet, sorry about the typo!)
- (b) Then solve it on *all* the other possible intervals. <u>Hint</u>: for one $k \in \mathbb{Z}$, work on the interval $I_k = (2k + 1, 2k + 3)$, on which the change of variable $x = 2k + 2 + \cos(t)$ works exactly as on (-1, 1) (in the previous question).
- (c) And finally what about the global solutions ? (a global solution will be a solution on every intervals I_k for each $k \in \mathbb{Z}$, plus it has to be continuous and differentiable at every points $x_k = 2k + 1$).
- (d) At the end, how many constants $(C \text{ or } C_1, C_2)$ do you have in the expression of the general solution? Is it weird to not find two constants? Why?

3 Other problems

Ex.3.1) (A small problem on integration methods.) Compute these integrals by using the good change of variable:

(a)
$$\int_{a}^{b} \sin^{4}(x) \cos(x) dx$$
, if $a, b \in \mathbb{R}$ are such that $a < b$,
(b) $\int_{0}^{1} \sqrt{1+t^{2}} dt$.

Ex.3.2) (Delicate) Find all the functions f, twice differentiable, from \mathbb{R} to \mathbb{R} such that:

$$\forall x, y \in \mathbb{R}, f(x+y) + f(x-y) = 2f(x)f(y).$$
(3.1)

<u>Hint</u>: first, f(x) = 0 is a solution, so after we can assume f to not be zero everywhere. So f(0) = 1.

Then, differentiate that relation 3.1 twice, first with y being a constant and differentiate in respect to x, then x is a constant and differentiate in respect to y. You should find a simple differential equation of the second order satisfied by f.