- Ex.1) Let $f : \mathbb{R} \to \mathbb{R}, x \mapsto (x^4 + 2)e^{2x}$. Justify that f is infinitely differentiable, then compute $f^{(n)}(x)$ for any $x \in \mathbb{R}$ and $n \in \mathbb{N}$.
- Ex.2) Let $x \in \mathbb{R}$. Compyte $\sum_{k=0}^{n} k \cos(kx)$.
- Ex.3) Let $f \in \mathcal{F}(\mathbb{R}, \mathbb{R})$ (ie f is a function of $\mathbb{R} \to \mathbb{R}$), differentiable at one point $a \in \mathbb{R}$. Show that $\lim_{h \to 0} \frac{f(a+h) f(a-h)}{2h} = f'(a)$. Is the other side¹ also true ?
- Ex.4) For some T > 0, does the derivate of a *T*-periodic function is still *T*-periodic ? Give a really *classic* example for which $T = 2\pi$.
- Ex.5) Consider this polynomial $P(X) = X^n + aX + b$, with $n \ge 2$, $a, b \in \mathbb{R}$. Show that P has not more than 3 distinct real roots.
- Ex.6) (DARBOUX's Theorem) Let $f \in \mathcal{D}^1([a,b],\mathbb{R})$ (ie $f : [a,b] \to \mathbb{R}$ continuous on [a,b] and differentiable on [a,b]). Assume f'(a) < 0 and f'(b) > 0.
 - (i) Show that there is one point c∈]a, b[where f'(c) = 0.
 (We are proving that a differentiate, even without being asked to be continuous, always satisify the *Intermediate Value Theorem* !).
 - (ii) (Bonus:) Find one example for f such that f' is not continuous every where on]a, b[.
- Ex.7) Another case for ROLLE's Theorem
 - (i) Let $f \in \mathcal{C}^0([a, +\infty[, \mathbb{R})$ (ie a continuous function from $[a, +\infty[$ to \mathbb{R} , differentiable on $]a, +\infty[$. Assume that $f(a) = \lim_{x \to +\infty} f(x)$. Show that there is one point $c \in]a, +\infty[$ such that f'(c) = 0.
 - (ii) (extbfBonus:)Is it still the case if the inferior bound ("[a") is "] $-\infty$ " (ie, domain of f is] $-\infty$, $+\infty$ [= \mathbb{R})? We assume $\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x)$. Is there at least one $c \in] -\infty$, $+\infty$ [such that f'(c) = 0? As always, if yes, prove it, if no, find a counter example.

Ex.8) Let $\alpha \in \mathbb{R}_+$. Find the class ² of the function $f_\alpha : \mathbb{R} \to \mathbb{R}, x \mapsto |x|^\alpha$.

¹If this limit with f(a + h) - f(a - h)/2h exists, will f be differentiable at a ? As always, if yes, prove it, if no, find a counter example.

²<u>Remember</u>: A function is said to be of class C^0 if continuous; of class C^1 if continuous and differentiable, of derivative C^0 ; and of class C^{k+1} if continuous, differentiable, of derivative C^k ($\forall k \in \mathbb{N}$).

- Ex.9) Let $f \in \mathcal{C}^0([a, b], \mathbb{R})$, with b > a > 0 being fixed, differentiable on]a, b[. Assume that f(a) = f(b) = 0. Prove the existence of one $c \in]a, b[$ such that $\frac{f(c)}{c} = f'(c)$. Bonus: Find one example of such f.
- Ex.10) Let $a, b, c \in \mathbb{R}$. Show that this equation (x being the unknown) $18ax^{17} + 14bx^{13} + 5cx^4 (a+b+c) = 0$ has at least one solution in]0, 1[.
- Ex.11) Let $f \in \mathcal{C}^1(\mathbb{R}, \mathbb{R})$, verifying $\lim_{x \to +\infty} x f'(x) = 1$. Carefully show that $\lim_{x \to +\infty} f(x) = +\infty$. Can you give one example of such f.
- Ex.12) Let $f \in \mathcal{C}^1(\mathbb{R}, \mathbb{R})$, which satisfies $\forall x \in \mathbb{R}, f \circ f(x) = \frac{x}{3} + 4$.
 - (i) Show that we have : $\forall x \in \mathbb{R}, f(\frac{x}{3}+4) = \frac{f(x)}{3}+4$,
 - (ii) Then prove that f' is constant (on \mathbb{R}),
 - (iii) Conclude and find the expression for f.
- Ex.13) Let $f \in C^1([0,1], \mathbb{R})$, be such that f(0) = 0 and f'(x) > 0 for any $x \in [0,1]$. Show that there is one m > 0 such that, for any $x \in [0,1]$, $f(x) \ge mx$. Give one classic example of a trigonometric function that satisfy these conditions. Which is the biggest possible³ value for this m?
- Ex.14) Let $f \in \mathcal{C}^1([a, b], \mathbb{R})$. Assume that f has an *infinite* number of zeros. Show the existence of at least one $c \in [a, b]$ such that f(c) = f'(c) = 0.
- Ex.15) Let $f, g \in \mathcal{C}^1([a, b], \mathbb{R})$, differentiable on]a, b[. Assume f(a) = f(b) and g(a) = g(b). Show that f' + fg' has at least one zero on]a, b[.
- Ex.16) Let $f \in \mathcal{D}^1(\mathbb{R}, \mathbb{R})$ such that $\lim_{x \to +\infty} (f(x) + f'(x)) = l$ for one constant $l \in \mathbb{R}$. Show that⁴ $\lim_{x \to +\infty} f(x) = l$.
- Ex.17) Let $f \in \mathcal{C}^{\infty}$ such that f(0) = 0 et $\lim_{x \to +\infty} = 0$. Show that there is an *increasing* sequence $(x_n)_{n \in \mathbb{N}}$ such that $f^n(x_n) = 0$ for any $n \in \mathbb{N}$.

Please, report any issue to MA101@crans.o2g Mahindra École Centrale, 2014

³One can think of a convexity inequality to find this m.

⁴One could consider $g \stackrel{\text{def}}{=} f \times \exp : \mathbb{R} \to \mathbb{R}, x \mapsto f(x) e^x$.