1 Exercises to do before tutorials.

1. Let f and g be defined by $f: x \mapsto \ln \left(x+\sqrt{1+x^{2}}\right)$ and $g: x \mapsto \ln \left(\sqrt{1+x^{2}}-x\right)$. Determine the domains of these two functions. Find and illustrate the variations of f, and show that when this has meaning, we have $f(x)+g(x)=0$.
Can you give the usual name of this function f ?
2. Find the domain of definition, domain of continuity and domain of derivability of the following functions, and then compute their derivatives:
(1) $f_{1}: x \mapsto \ln \left(\frac{1-x}{1+x}\right)$,
(3) $f_{3}: x \mapsto \ln (\cos (x))$,
(4) $f_{4}: x \mapsto \mathrm{e}^{\frac{1}{1-x}}$,
(2) $f_{2}: x \mapsto \ln \left(\frac{x^{2}-4 x+4}{-x^{2}-x+6}\right)$,
(5) $f_{5}: x \mapsto \sin (x)^{\cos (x)}$,
(6) $f_{6}: x \mapsto x^{\left(x^{x}\right)}$,
3. Find ${ }^{1}$ the following limit: $\lim _{x \longleftrightarrow+\infty} \frac{\left(x^{x}\right)^{x}}{x^{\left(x^{x}\right)}}$.
4. For $x \in \mathbb{R}$ and $n \in \mathbb{N}$, compute \int^{2} the next two sums: $\sum_{k=0}^{n}\binom{n}{k} \cosh (k x), \sum_{k=0}^{n}\binom{n}{k} \sinh (k x)$.
5. Show that, if $\alpha>0$, then $\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{x^{\alpha}}=-\infty$.

Bonus: also prove that $\lim _{x \rightarrow 0} \ln (x) \cdot x^{\alpha}=0$.
6. By the method you like, determine the following limits:
(a) $\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}$,
(e) $\lim _{x \rightarrow 0}(\cos (x))^{\frac{1}{\sin ^{2}(x)}}$,
(b) $\lim _{x \rightarrow 0} \frac{a^{x}-1}{x}$, if $a>0$,
(f) $\lim _{x \rightarrow 0^{+}}(\sin (x))^{\frac{1}{\ln (x)}}$,
(c) $\lim _{x \rightarrow 0} \frac{(1+x)^{\alpha}-1}{x}$, if $\alpha \in \mathbb{R}$.
(g) $\lim _{x \rightarrow 0^{+}} x^{\sin (x)}$,
(d) $\lim _{x \rightarrow+\infty}(\ln (x))^{\frac{1}{x}}$,
(h) $\lim _{x \rightarrow+\infty}\left(\mathrm{e}^{x}-1\right)^{\frac{1}{x}}$.
7. (Hard) For $x, y \in \mathbb{R}_{+}^{*}$, by using a simple convexity inequality with the correct function ${ }^{3}$, show

$$
x \ln (x)+y \ln (y) \geqslant(x+y) \ln \left(\frac{x+y}{2}\right) .
$$

2 Exercises to do during or after tutorials.

1. Solve, on the appropriate set, the following equation: $\ln |x+2|+\ln 3 \leqslant \ln |3 x-4|$.

[^0]2. Precise the values (for x) when the following expressions have a sense, and try to simplify them as much as possible:
(1) $x^{\frac{\ln (\ln (x))}{\ln (x)}}$,
(2) $\ln _{x}\left(\ln _{x}\left(x^{\left(x^{x}\right)}\right)\right)$ (where we remember that $\ln _{x}$ is the x-based logarithm.)
3. Decide which of the two numbers is greater:
(a) e^{π} or π^{e},
(b) $2^{\sqrt{2}}$ or e,
(c) $\ln (8)$ or 2 .
4. Compute the derivatives of the following functions, of course you will not forget to precise their domains:
(1) $f: x \mapsto \arccos (x-1)$,
(2) $f: x \mapsto \arctan |x|$ (which is a syntactic shortcut for $\arctan (|x|)$, usually employed),
(3) $f: x \mapsto \operatorname{arcsinh}\left(\sqrt{x^{2}-1}\right)$,
5. For $a, b \in \mathbb{R}$, with $a \neq b$, by using the concavity of $\tanh :[0,+\infty) \rightarrow \mathbb{R}, x \mapsto \tanh x=$ $\frac{\mathrm{e}^{x}-1}{\mathrm{e}^{x}+1}$, show that
$$
\frac{\mathrm{e}^{b}-\mathrm{e}^{a}}{b-a}<\frac{\mathrm{e}^{b}+\mathrm{e}^{a}}{2}
$$
6. We say that $f:[0,+\infty) \rightarrow \mathbb{R}$ is subadditiv \AA^{4} if, for any $x_{1}, x_{2} \in(0,+\infty), f$ satisfies $f\left(x_{1}+x_{2}\right) \leqslant f\left(x_{1}\right)+f\left(x_{2}\right)$. Prove that:
(a) if $x \mapsto \frac{f(x)}{x}$ is decreasing on $[0,+\infty)$ then f is subadditive.
(b) (Hard) if f is convex and subaditive ξ^{5} on $[0,+\infty)$, then $x \mapsto \frac{f(x)}{x}$ is a decreasing function (on that interval $[0,+\infty)$).
(c) give two examples of f such that $x \mapsto \frac{f(x)}{x}$ is decreasing on $[0,+\infty)$, one with f being convex (easy), one with f not convex (harder).
7. Show that each of the equations $\sin (\cos (x))=x$ and $\cos (\sin (x))=x$ has exactly one root in $[0, \pi / 2]$. Moreover, show that if x_{1} and x_{2} are the roots of the former and the latter equation, respectively, then $x_{1}<x_{2}$ (hard!).

3 Bonus exercises.

1. Show that the following functions f_{i} are bijective (one-to-one and one-by-one), on the correct sets, and try to find an expression for their inverse $\left(f_{i}^{-1}\right)$ (precise their domain):

[^1](1) $f_{1}: x \mapsto 3 x-5$,
(4) $f_{4}: x \mapsto \frac{1}{3 x-2}$,
(2) $f_{2}: x \mapsto \sqrt{3}-x$,
(5) $f_{5}: x \mapsto \frac{3 x+2}{2 x-1}$,
(3) $f_{3}: x \mapsto x^{2}-1$ (on \mathbb{R}_{-}),
(6) $f_{6}: x \mapsto \ln \left(2 \mathrm{e}^{x}-1\right)$,
2. Same functions as the previous exercise, but now study the derivability of the functions and their inverses, then compute their derivatives. You can also try to look for some particular points where the functions and their derivatives are canceled.
3. Solve the equation $\sinh (x)=3$, without using a calculator nor the formula expressing arcsinh as a logarithm.
4. Solve ${ }^{6}$ the equation $\sum_{k=0}^{n} \sinh (2+k x)=0$ for $n \in \mathbb{N}$.
5. Solve the following system:
\[

\left\{$$
\begin{aligned}
\operatorname{arcsinh}(x) & =2 \operatorname{arcsinh}(y) \\
3 \ln (x) & =2 \ln (y)
\end{aligned}
$$\right.
\]

6. Let $a, b \in \mathbb{R}$, solve the following equation (x being the unknown):

$$
(\cosh (x)+\sinh (x))^{\operatorname{arcsinh}(x-a)}=(\cosh (x)-\sinh (x))^{\operatorname{arcsinh}(x-b)} .
$$

7. Let $x, y \in \mathbb{R}$, show that, if $x=\ln \left(\tan \left(\frac{\pi}{4}+\frac{y}{2}\right)\right)$, then: $\tanh \left(\frac{x}{2}\right)=\tan \left(\frac{y}{2}\right), \tanh (x)=$ $\sin (y)$ and $\cosh (x)=\frac{1}{\cos (y)}$.
8. Simplify the following expressions:
(i) $\arctan \left(\tan \left(\frac{5 \pi}{6}\right)\right)$,
(ii) $\arctan \left(\sin \left(\frac{\pi}{6}\right)\right.$,
(iii) $\arctan \left(\cos \left(-\frac{\pi}{6}\right)\right)$.
9. Study these expressions (one could try to look for some trick):
(1) $\arccos \left(\frac{1-t^{2}}{1+t^{2}}\right)+\arcsin \left(\frac{2 t}{1+t^{2}}\right)$, for $t \in \mathbb{R}$,
(2) $\arctan \left(\frac{x+y}{1-x y}\right)-\arctan (x)-\arctan (y)$, for $x, y \in \mathbb{R}$, with $x y /=1$.
${ }^{6}$ One could use a technique like the one used to solve $\sum_{k=0}^{n} \sin k \theta=0$.
10. Solve these equations:
(1) $\tan (3 \arcsin (x))=1$,
(2) $\arctan (x)+\arctan (2 x)=\frac{\pi}{5}$.
(3) $\arctan \left(\frac{p}{q}\right)+\arctan \left(\frac{q-p}{q+p}\right)=\frac{\pi}{5}$ with $p, q \in \mathbb{N}$ verifying $0<p<q$.
11. Compute these sums:
(1) $\arctan (1)+\arctan (2)+\arctan (3)$,
(2) $\arctan (2)+\arctan (5)+\arctan (8)$,
12. For $n \in \mathbb{N}^{*}$, and $x_{1}, \ldots, x_{n} \in(0, \pi)$, let $x \stackrel{\text { def }}{=} \frac{1}{n} \sum_{k=1}^{n} x_{k}$. Show that:
(a) $\prod_{k=1}^{n} \sin \left(x_{k}\right) \leqslant(\sin (x))^{n}$,
(b) $\prod_{k=1}^{n} \frac{\sin \left(x_{k}\right)}{x_{k}} \leqslant\left(\frac{\sin (x)}{x}\right)^{n}$.
13. For $x \in \mathbb{R}$ and $y \in \mathbb{R}_{+}^{*}$, show that $\left.x y \leqslant \mathrm{e}^{x}+y(\ln (y)-1)\right)$.

Prove also that the inequality is an equality (ie, the equality holds) if and only if $y=\mathrm{e}^{x}$.

[^0]: ${ }^{1}$ Here, expressing powers as exponentials could be a good idea.
 ${ }^{2}$ Remember the expression/definition of cosh and sinh in terms of exponentials, and binomial theorem.
 ${ }^{3}$ Try the function $x \mapsto x \ln (x) \ldots$

[^1]: ${ }^{4} f$ is said to be additive when $f\left(x_{1}+x_{2}\right)=f\left(x_{1}\right)+f\left(x_{2}\right)$. One example of an additive (and therefore subadditive) function is $f: x \mapsto \alpha x$ for any constant $\alpha \in \mathbb{R}$.
 ${ }^{5}$ The initial exercise asked to work on f defined only on $(0,+\infty)$, but it was not enough to prove this part. We need to be able to compute $f(0)$, which satifies $f(0) \leqslant f(0)+f(0)$, so \ldots

