
Some solutions for Week 8 MA101 December 9, 2014

Remark 1. These partial solutions are only there to help, to give a hint or some element of answers.

Some problems are not corrected because they should really be easy enough for you to work on them by your

own, or because they are not really exciting.

Some remarks might not be as serious as what you are used to, so deal with it.

1 A. Homework.

Ex.A.1) This is based on simple Riemann sums, with left-endpoint values for every rectangle of basis 10 sec.

What we can say is quickly : �p�q “ �1p�q so �p120q ´ �p0q “
ż 120

0

�p�qd�. But �p0q “ 0�, so the distance

we are looking for is �p120q “
ż 120

0

�p�qd�.

(a) This integral is approximated by left rectangles :

ż 120

0

�p�qd� » 10 ˚ �p0�q ` 10 ˚ p�p10�qq ` ¨ ¨ ¨ ` 10 ˚
p�p110�qq “ 1745.0 � “ 1.74 ��.

(b) This integral is approximated by right rectangles :

ż 120

0

�p�qd� » 10 ˚ �p10�q ` 10 ˚ p�p20�qq ` ¨ ¨ ¨ `
10 ˚ p�p120�qq “ 1920.0 � “ 1.92 ��.

Ex.A.2) Similarly, we also use Riemann sums here.

(a) We can write �p5�q “ �p5�q ´ �p0�q because �p0�q “ 0. But �p5�q ´ �p0�q “
ż 5s

0s

�p�qd� because

�p�q “ �1p�q.
We only know that the acceleration is decreasing, so the left-endpoint approximation (with left
Riemann rectangles) will be an upper-bound, and the right-endpoint approximation will give a
lower-bound.

(Left)

ż 5s

0s

�p�qd� ď 1� ˚ �p0�q ` 1� ˚ �p1�q ` . . . 1� ˚ �p4�q “ 23.33 �{�,

(Right)

ż 5s

0s

�p�qd� ě 1� ˚ �p1�q ` 1� ˚ �p2�q ` . . . 1� ˚ �p5�q “ 14.15 �{�.

(b) Similarly, we write that �p0�q “ 0�, so �p3�q “ �p3�q ´ �p0�q “
ż 3s

0s

�p�qd� because �1p�q “ �p�q.
So thanks to the monotony of the integral, and because � is increasing (indeed, �p�q ą 0 for any
� ą 0), we know that �p3�q ď 1�˚�p1�q`1�˚�p2�q`1�˚�p3�q. We find upper-bounds of �p1�q, �p2�q
and �p3�q thanks to the same method as previously.
Finally, �p3�q ď 45.82 �.

Ex.A.3) Let �p�q “ 1

1 ` �2
, well defined and continuous on r0, 1s.

• On r0, 1s, 1

2
ď �p�q ď 1 (by the method you like), so

1

2
“

ż 1

0

1

2
d� ď

ż 1

0

�p�qd� ď
ż 1

0

1d� “ 1 thanks

to the Max-Min inequality (or thanks to the monotony of the integral: if � ď � then

ż

b

a

� ď
ż

b

a

�).

• We do the same on

„

0,
1

2



, to find the bounds
4

5
ď �p�q ď 1 (by the method you like), so

2

5
“

ż 1

2

0

4

5
d� ď

ż 1

2

0

�p�qd� ď
ż 1

2

0

1d� “ 1

2
(thanks to the Max-Min inequality).

• We again do the same on

„

1

2
, 1



, to find the bounds
1

2
ď �p�q ď 4

5
(by the method you like), so

1

4
“

ż 1

1

2

1

2
d� ď

ż 1

1

2

�p�qd� ď
ż 1

1

2

4

5
d� “ 2

5
(thanks to the Max-Min inequality).
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• We combine these two bounds to have an improved estimate of the initial integral :
2

5
` 1

4
“ 13

20
ď

ż 1

0

�p�qd� ď 1

2
` 2

5
“ 18

20
.

• (Bonus:) In fact, we know that

ż 1

0

1

1 ` �2
d� “

”

arctanp�q
ı1

0

“ Þ

4
(here, arctanp�q “ tan´1p�q in

the arctangent, or tangent inverse function). With the approximation
Þ

4
» 0.7853, we can check

that the inequality
1

2
ď Þ

4
ď 1 is indeed true, and the better inequality is also true :

13

20
ď Þ

4
ď 9

10
.

Ex.A.4)

ż

π

0

1 ` ���p�qd� “ Þ `
”

sinp�q
ıπ

0

“ Þ.

Ex.A.5)

ż 0

π{2

1 ` ���p2�q
2

d� “ ´Þ

2
`

„

sinp2�q
4

0

´π{2

“ ´Þ

2
.

Ex.A.6)

ż

?
3

´
?

3

p� ` 1qp�2 ` 4qd� “ 10
?

3 » 17.321 by direct integration of the expanded polynomial.

Ex.A.7) Similarly

ż 4

9

1 ´ ?
�?

�
d� “

”

2
?

� ´ �
ı4

9

“ 3.

Ex.A.8) The general case is
d

d�

˜

ż

bpxq

apxq
�p�qd�

¸

“ �1p�q�p�p�qq ´ �1p�q�p�p�qq which is a direct consequence of the

Fundamental Theorem of Calculus (cf. lectures, or Wikipédia).

a)
d

d�

˜

ż

?
x

0

cosp�qd�

¸

“ 1

2
?

�
cosp

?
�q,

b)
d

d�

ˆ
ż sin x

0

3�2d�

˙

“ cosp�q3 sin2p�q.

Ex.A.9) For � ą 0, we have

ż

π{k

0

sinp��qd� “
„

cosp��q
�

π{k

0

“ 1

�
´ p´ 1

�
q “ 2

�
as wanted.

Remark: one arch of the curve � “ sinp��q is indeed between 0 and Þ{�, and not between 0 and Þ.

Ex.A.10) We use one property1 of the integral :

ż 2

´2

�p�qd� “
ˆ

ż ´1

´2

�p�qd�

˙

`
ˆ

ż 1

´1

�p�qd�

˙

`
ˆ

ż 2

1

�p�qd�

˙

.

And now, on every of these three intervals, we just use the given expression of � :

•

ż ´1

´2

�p�qd� “
ż ´1

´2

1d� “ 1,

•

ż 1

´1

�p�qd� “
ż 1

´1

1 ´ �2d� “
„

� ´ �3

3

1

´1

“ 0,

•

ż 2

1

�p�qd� “
ż 2

1

2d� “ 2.

So

ż 2

´2

�p�qd� “ 1 ` 0 ` 2 “ 3.

Ex.A.11) For a continuous function � , we recognized a Riemann sum2.

The �th partition is t�
pnq
1

, . . . , �
pnq
k

, . . . , �pnq
n

u “
"

�

�
: 1 ď � ď �

*

for any � ą 0.

1This property is called additivity on intervals, see https://en.wikipedia.org/wiki/Integral#Conventions if required.
2Take a look to that Wikipédia page for more details : https://en.wikipedia.org/wiki/Riemann_sum#Right_Riemann_Sum.
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So the norm of the partition is
1

�
, which is indeed going to 0 when � Ñ `8.

So we can conclude directly, by using what have been seen in the lectures, that

1

�

ˆ

�

ˆ

1

�

˙

` �

ˆ

2

�

˙

` ¨ ¨ ¨ ` �
´�

�

¯

˙

“
n

ÿ

k“1

�p�pnq
k

qD�����
pnq
k

ÝÑ
nÑ`8

lim
nÑ`8

x
pnq
n

ż

lim
nÑ`8

x
pnq
1

�p�qd� “
ż 1

0

�p�qd�.

Ex.A.12) By the previous result, applied to � : � ÞÑ �15, this limit will be

ż 1

0

�p�qd� “
ż 1

0

�15d� “
„

�16

16

1

0

“ 1

16
.

Ex.A.13) Thanks to the Fundamental Theorem of Calculus, such � is continuous, twice differentiable.

�p0q “ 3 `
ż 0

0

1 ` sinp�q
2 ` �2

d� “ 3. So � has to satisfies �p0q “ 3, but �p0q “ �. So � “ 3.

� 1p0q “ 1 ` sinp0q
2 ` 02

“ 1

2
. So � has to satisfies �1p0q “ 1

2
, but �1p0q “ �. So � “ 1

2
.

�2p0q “ 1

2
. So � has to satisfies �2p0q “ 1

2
, but �2p0q “ 2�. So � “ 1

4
.

Ex.A.14) For more details on this, please take a look at Thomas Calculus, section 5.3 (Volumes of Solids of
Revolution-Disks and Washers). The main formula we will use is this one (numbered as p2q, page 380 of
Thomas Calculus 9th edition) :

Theorem 1 (Volume of a Solid of Revolution (Rotation About the �-axis)). The volume of the solid

generated by revolving about the �-axis the region between the �-axis and the graph of the continuous

function � “ �p�q, � ă � ă �, is :

� “
ż

d

c

Þpradiusp�qq2d� “
ż

d

c

Þp�p�qq2d�.

You should try to illustrate these three examples with a drawing (not easy on 3D, try to do your best).

a. In this first case, � will move from ´1 to 1, and the radius is �p�q “ 1 ´ �2 (distance from the line
� “ 1 to the curve � “ �2, at that point �).

So the total volume is �1 “
ż 1

´1

Þp�p�qq2d� “
ż 1

´1

Þp1 ´ �2q2d� “ Þ

ż 1

´1

p1 ´ 2�2 ` �4qd� “

Þ

„

� ´ 2�3

3
` �5

5

1

´1

“ ¨ ¨ ¨ “ 16Þ

15
.

b. Here we use the more general result (the one which consider a volume with “a whole in the middle”,
called the Washer method, cf. Thomas Calculus for example).
In this case, � will move from ´1 to 1, and the inner radius is �p�q “ 1 (distance from the line
� “ 2 to the line � “ 1) and the outer radius is �p�q “ 2 ´ �2 (distance from the line � “ 2 to the
curve � “ �2, at that point �).

So the total volume is �2 “
ż 1

´1

Þp�p�qq2 ´ p�p�qq2d� “
ż 1

´1

Þpp2 ´ �2q2 ´ 1qd� “ Þ

ż 1

´1

p4 ´ 4�2 `

�4 ´ 1qd� “ Þ

„

3� ´ 4�3

3
` �5

5

1

´1

“ ¨ ¨ ¨ “ 56Þ

15
.

As expected, we find �2 ą �1 (this inequality is clear on a drawing).

c. Here we use again the Washer method.
In this last case, � will move from ´1 to 1, and the inner radius is now �p�q “ 1 ` �2 (distance from
the line � “ ´1 to the curve � “ �2, at that point �) and the outer radius is �p�q “ 2 (distance
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from the line � “ ´1 to the line � “ 1).

So the total volume is �3 “
ż 1

´1

Þp�p�qq2 ´ p�p�qq2d� “
ż 1

´1

Þp4 ´ p1 ` �2q2qd� “ Þ

ż 1

´1

p3 ´ 2�2 ´

�4qd� “ Þ

„

3� ´ 2�3

3
´ �5

5

1

´1

“ ¨ ¨ ¨ “ 64Þ

15
.

Finally, we find �3 ą �2, but it is somehow harder to graphically understand this inequality on a
drawing.

2 B. Tutorial for class workout.

Ex.B.1) On r�, �s, this operator �� can be computed by ��p�q “ 1

� ´ �

ż

b

a

�p�qd�.

a. So ��p� ` �q “ ��p�q ` ��p�q is obvious by the linearity of the integral,

b. So ��p��q “ �.��p�q is also almost obvious by the linearity of the integral (as � is a constant),

c. If � ď � on r�, �s (ie @� P r�, �s, �p�q ď �p�q), then � ´ � is a positive function. But we know that
the integral from � to � (with � ă �) of a positive function is itself positive. So ��p� ´ �q ď 0, but
��p� ´ �q “ ��p�q ´ ��p�q, so ��p�q ď ��p�q is direct (we just proved the monotony of the integral).

Ex.B.2) Let � ą 0 and � P N
˚. We consider a �-sided regular polygon in a circle of radius �, as illustrated in this

figure3 :

Figure 1: �-sided regular polygon

This figure shows that the area of one of the � triangles that constitute the polygon is �n “ 1

2
ˆ�ˆ� sinp�q,

with � “ 2Þ

�
. So the entire area is �n “ � ˆ �n “ ��2

2
sinp2Þ

�
q.

For � Ñ `8, we have �n “ ��2

2
sin

ˆ

2Þ

�

˙

“ Þ�2

ˆ

sinp 2π

n
q

2π

n

˙

Ñ
nÑ`8

Þ�2, because
sinp�q

�
Ñ

xÑ0
1.

Remark: so of course we find that the limit of the area is Þ�2, the area of the circle of radius �, because
the �-sided regular polygon will fill the circle entirely as � Ñ `8.

Ex.B.3) Let � be4 such that � sinpÞ�q “
ż

x
2

0

�p�qd� for � P R.

For the left side, let � : R Ñ R, � ÞÑ � sinpÞ�q. � is continuous and differentiable on R. We have
�1p�q “ sinpÞ�q ` �Þ cospÞ�q for every � P R.

For the right side, let ℎ : R Ñ R, � ÞÑ
ż

x
2

0

�p�qd�. We assume that � is Riemann integrable, so ℎ is

continuous, and that � is continuous, so ℎ is differentiable. Furthermore, we have ℎ1p�q “ 2��p2�q for

any � P R. But �p4q “ �p2�q if � “ 2, so �p4q is
ℎ1p2q

2
.

3Such a figure, and an other one of the entire circle being divided as � pieces can really help in this problem. Usually, doing

figures and small plots of function is an excellent reflex!
4We should also justify properly why such a � exists. . .
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But �p�q “ ℎp�q so ℎ1p2q “ �1p2q “ sinp2Þq ` 2Þ cosp2Þq “ 2Þ.
Hence, �p4q “ Þ.

3 C. Additional Exercises.

Ex.C.1) Not sure of how to explain all this.

First, let change the notation: for � ą 0, let ℎp�q “
ż

x

0

1?
1 ` 4�2

d�.

� ÞÑ 1?
1 ` 4�2

is continuous on p0, `8q so ℎ is well defined, continuous and differentiable on p0, `8q,

and ℎ1p�q “ 1?
1 ` 4�2

.

But ℎ1p�q “ dℎ

d�
p�q is the

d�

d�
of the question paper. Similarly, ℎ2p�q is the

d2�

d�2
from the question paper.

We compute ℎ2p�q “ d

d�

ˆ

1?
1 ` 4�2

˙

“ ´ 4�

p4�2 ` 1q3{2
.

So
d2�

d�2
from the question paper is ´p4�2 ` 1q3{2

4�
.

To be concluded.

Ex.C.2) This problem is harder than the previous ones. Assume that � is Riemann integrable and
continuous on R.

For � P R, let �p�q “
ż

x

0

ˆ
ż

u

0

�p�qd�

˙

d� the left side, and ℎp�q “
ż

x

0

�p�qp� ´ �qd� the right side.

For the left side, by Riemann integrability of � , the application � : � ÞÑ
ż

u

0

�p�qd� is continuous and so

Riemann integrable on every bounded interval r0, �s. So � is well defined, continuous, and differentiable

on R. For one � P R, as �p�q “
ż

x

0

�p�qd�, we know that �1p�q “ �p�q, ie �1p�q “
ż

x

0

�p�qd�.

For the right side, by Riemann integrability of � ÞÑ �p�qp� ´ �q, for any � P R, the function ℎ is well
defined for any �, and continuous on R. Now, for � P R, we can split ℎp�q in two parts :

ℎp�q “
ż

x

0

�p�qp� ´ �qd� “
ˆ

ż

x

0

�p�q�d�

˙

´
ˆ

ż

x

0

�p�q�d�

˙

“ �

ˆ
ż

x

0

�p�qd�

˙

´
ˆ

ż

x

0

�p�q�d�

˙

.

So ℎ is also differentiable, because � ÞÑ �p�q and � ÞÑ �p�q� are continuous. And ℎ1p�q “
ˆ

ż

x

0

�p�qd�

˙

`

� pr�p�qsx

0
q ´ r�p�q�sx

0
“

ˆ
ż

x

0

�p�qd�

˙

` ��p�q ´ ��p�q “
ˆ

ż

x

0

�p�qd�

˙

. So we recognized that �1p�q “
ℎ1p�q.
And finally, at � “ 0, we have directly that �p0q “ 0 and ℎp0q “ 0, because we integrate from 0 to 0.

So �1 “ ℎ1 and they have one value in common (at � “ 0), hence they are equal : @� ą 0, �p�q “ ℎp�q.
Hence, as wanted, we can conclude that for any � Riemann integrable and continuous on R :

@� ą 0,

ż

x

0

ˆ
ż

u

0

�p�qd�

˙

d� “
ż

x

0

�p�qp� ´ �qd�.
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