
Solutions for problems on usual functions MA101 December 9, 2014

Remark 1. These solutions are there to help. Almost every problem is corrected, with many details
for most of them. Some solutions are really short because the question is not hard nor tricky.

Some computations are abbreviated with . . . , of course if you solve it yourself (to practice, or
during an exam), you have to do every step!

Sometimes, it might not be specify in which set � or � are taken, it is usually R.
For this sheet, some problems are not (yet) corrected because they really are harder than we thought

they will be. Any suggestion is welcome!

1 Solutions for “Exercises to do before tutorials”.

1. Let � and � be defined by � : � ÞÑ ln
´

� `
a

1 ` �2

¯

and � : � ÞÑ ln
´

a

1 ` �2 ´ �
¯

.

For � P R,
a

1 ` �2 ą |�| so � `
a

1 ` �2 ą 0 and
a

1 ` �2 ´ � ą 0. � and � are defined,
continuous and differentiable on R.

For � P R, � 1p�q “
ˆ

1 ` �?
1 ` �2

˙

1

� `
?

1 ` �2
“ ¨ ¨ ¨ “ 1?

1 ` �2
ą 0. Then � 1 ą 0 every-

where implies that � is increasing on R.

For � P R, we use the usual trick of conjugate quantities1 �p�q “ lnp
a

1 ` �2´�q “ ln

ˆp1 ` �2q ´ �2

?
1 ` �2 ` �

˙

“

ln

ˆ

1?
1 ` �2 ` �

˙

“ ´ lnp
a

1 ` �2 ` �q “ ´�p�q as wanted.

• For any �, sinhp�p�qq “ e�p�q ´ e´�p�q

2
, but ´� “ � so sinhp�p�qq “ e�p�q ´ e�p�q

2
and

therefore sinhp�p�qq “
`

� `
?

1 ` �2
˘

´
`

´� `
?

1 ` �2
˘

2
“ � so sinhp�p�qq “ �.

• Conversely, (with patience) one can prove that �psinhp�qq “ � for any � P R.

Therefore, we recognize � : it is the inverse hyperbolic sine, ie. the inverse function of the

function sinh : � ÞÑ e� ´ e´�

2
called hyperbolic sine.

Remark 2. For a more complete study of � , also known as inverse hyperbolic sine, please read
this Wikipédia page: https://en.wikipedia.org/wiki/Inverse_hyperbolic_sine.

2. Find the domain of definition, domain of continuity and domain of derivability of the
following functions, and then compute their derivatives:

(1) For �1 : � ÞÑ ln

ˆ

1 ´ �

1 ` �

˙

.

• �1p�q is defined iff 1 ` � ‰ 0 and
1 ´ �

1 ` �
ą 0, so iff � P p´1, 1q. So ��1

“ p´1, 1q, on

which �1 is clearly continuous and differentiable.

1For � ‰ �, � ` � “
�2 ´ �2

� ´ �
and if � ‰ ´�, � ´ � “

�2 ´ �2

� ` �
.
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• On this domain, � 1
1p�q “

ˆ

d

d�

ˆ

1 ´ �

1 ` �

˙˙

ˆ
˜

1
1´�
1`�

¸

“ ¨ ¨ ¨ “ ´2�

1 ´ �2
.

(2) For �2 : � ÞÑ ln

ˆ

�2 ´ 4� ` 4

´�2 ´ � ` 6

˙

.

• �2p�q is defined iff ´�2 ´ � ` 6 ‰ 0, and

ˆ

�2 ´ 4� ` 4

´�2 ´ � ` 6

˙

ą 0. By solving these two

quadratic equations in �, we find that �2 ´ 4� ´ 4 “ p� ´ 2q2 and ´�2 ´ � ` 6 “
´p� ` 3qp� ´ 2q, so �2p�q is defined iff � P p´3, 2q. So ��2

“ p´3, 2q, on which �1 is
well continuous and differentiable.

• On this domain, � 1
2p�q “ ¨ ¨ ¨ “ 2

� ´ 2
` 2� ` 1

´�2 ´ � ` 6
.

(3) For �3 : � ÞÑ lnpcosp�qq.
• �3p�q is defined iff cosp�q ą 0 so iff there is a � P Z such that � ´ 2�Þ P

´

´Þ

2
,
Þ

2

¯

.

So ��3
“

´

´Þ

2
,
Þ

2

¯

` 2ÞZ, on which �3 is indeed continuous and differentiable.

• On this domain, � 1
3p�q “ d

d�
pcosp�qq 1

cosp�q “ ´ tanp�q.

• Remark: this result proved that a primitive of tan is the function p´Þ{2, Þ{2q Ñ
R, � ÞÑ ´ ln p| cosp�q|q ` � (for any � P R).

(4) For �4 : � ÞÑ e
1

1´x .

• �4p�q is defined iff 1 ´ � ‰ 0. So ��4
“ Rzt1u, on which �4 is clearly continuous and

differentiable.

• On this domain, � 1
4p�q “

ˆ

d

d�

ˆ

1

1 ´ �

˙˙

ˆ e
1

1´x “ e
1

1´x

p1 ´ �q2
.

(5) For �5 : � ÞÑ sinp�qcosp�q.

• �5p�q is defined iff sinp�q ą 0. And then, �5p�q “ exppcosp�q lnpsinp�qqq. But sinp�q ą
0 iff � mod 2Þ P p0, Þq. So ��5

“ p0, Þq ` 2ÞZ, on which �5 is indeed continuous and
differentiable.

• On this domain, � 1
5p�q “

ˆ

´ sinp�q lnpsinp�qq ` cosp�qcosp�q
sinp�q

˙

exppcosp�q lnpsinp�qqq.

• You can try to simplify it more if you want!

(6) For �6 : � ÞÑ �p�xq.

• �6p�q is defined iff � ą 0. So ��6
“ p0, `8q, on which �6 is continuous and differen-

tiable. Additionally, �6p�q “ expp�� lnp�qq “ expplnp�q expp� lnp�qqq.

• On this domain, � 1
6p�q “ ��

ˆ

1

�
` lnp�q plnp�q ` 1q

˙

�p�xq.

3. Find2 the following limit: lim
�Ñ`8

p��q�

�p�xq .

Remember that for any �, � ą 0, �� “ expp� lnp�qq. Therefore, for � ą 0, �� “ expp� lnp�qq.
And �p�xq “ expp�� lnp�qq “ exppexpp� lnp�qq lnp�qq, and p��q� “ expp� lnp��qq “ expp�2 lnp�qq.

So, for � ą 0, the fraction is
p��q�

�p�xq “ expp�2 lnp�qq
expp�� lnp�qq “ exp

`

lnp�q
`

�2 ´ ��
˘˘

“ exp
`

lnp�q�2
`

1 ´ ��´2
˘˘

.
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But now, observe these three limits: lnp�q Ñ
�Ñ`8

`8, �2 Ñ
�Ñ`8

`8, and
`

1 ´ ��´2
˘

Ñ
�Ñ`8

´8.

And we know that expp�q Ñ
�Ñ´8

0, so by composition and product we conclude that

lim
�Ñ`8

p��q�

�p�xq “ 0.

Remark 3. Numerically, if we want to compare �p�xq and p��q�, we can compute their values
for some values of �:

� p��q�
�p�xq

0 1 0

1 1 1

2 16 16

3 19683 7.6256e`12

3.4 1.39282e`06 1.20548e`34

3.6 1.62062e`07 9.45719e`55

3.8 2.35546e`08 3.66703e`92

4 4.29497e`09 1.34078e`154

4.2 9.86546e`10 2.56862e`258

After 4.2, the calculator used for computing this (the Python3 v2.7.6 toplevel), stopped and
yelled at me with a “OverflowError”: �p�xq becomes too big.

With these values, it is clear that the denominator �p�xq is growing way faster than the
numerator p��q�.

4. For � P R and � P N, compute4 the next two sums:
�

ÿ

�“0

ˆ

�

�

˙

coshp��q,
�

ÿ

�“0

ˆ

�

�

˙

sinhp��q.

By definition5, coshp�q “ e� ` e´�

2
and sinhp�q “ e� ´ e´�

2
.

Therefore, if ��p�q “
�

ÿ

�“0

ˆ

�

�

˙

coshp��q, we can directly write that coshp��q “ e�� ` e´��

2
, and

so:

��p�q “
�

ÿ

�“0

ˆ

�

�

˙

e�� ` e´��

2
“

�
ÿ

�“0

ˆ

�

�

˙ ˆ

e��

2
` e´��

2

˙

3This is the programming language we will use for CS 101 on the second semester! Go take a look to
https://www.python.org/about/ if you are curious about it!

5You can remember these definitions with this little trick: for any function � : R Ñ R, �p�q “
�p�q ` �p´�q

2
`

�p�q ´ �p´�q

2
is the decomposition of � into an even part � ÞÑ

�p�q ` �p´�q

2
and an odd part � ÞÑ

�p�q ´ �p´�q

2
.

Well then cosh is the even part of exp (easy to remember, because cos itself is even), and sinh is the odd part of exp
(sin is odd).
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By using the basic property �p��q “ p��q�
, we can develop:

��p�q “ 1

2

�
ÿ

�“0

ˆ

�

�

˙

´

pe�q� `
`

e´�
˘�

¯

So by using associativity, we can write this as:

��p�q “
˜

1

2

�
ÿ

�“0

ˆ

�

�

˙

pe�q�

¸

`
˜

1

2

�
ÿ

�“0

ˆ

�

�

˙

`

e´�
˘�

¸

And then by two applications of the binomial theorem, in the form p1 ` �q� with � “ e� and
� “ e´�:

��p�q “
ˆ

1

2
p1 ` e�q�

˙

`
ˆ

1

2

`

1 ` e´�
˘�

˙

Similarly, one can compute that

��p�q “
ˆ

1

2
p1 ` e�q�

˙

´
ˆ

1

2

`

1 ` e´�
˘�

˙

.

Remark 4. One other method, simpler but longer, is to compute ��p�q ` ��p�q “ ¨ ¨ ¨ “
1

2
p1 ` e�q� and then ��p�q ´ ��p�q “ ¨ ¨ ¨ “ 1

2
p1 ´ e�q�, and finally solve this simple system of

two equations and two unknowns.

Remark 5. We can also write ��p�q as
1

2
cosh�

´�

2

¯

cosh
´��

2

¯

.

And ��p�q “ 1

2
cosh�

´�

2

¯

sinh
´��

2

¯

5. Show that, if Ð ą 0, then lim
�Ñ0`

lnp�q
�Ð

“ ´8.

Bonus: also prove that lim
�Ñ0`

lnp�q.�Ð “ 0.

Let Ð ą 0. For � Ñ 0`, lnp�q Ñ
�Ñ0`

“ ´8 on one hand; and �Ð Ñ
�Ñ0`

“ 0`, so
1

�Ð
Ñ

�Ñ0`
“ `8

on the other hand. So by the product rule,
lnp�q
�Ð

Ñ
�Ñ0`

p´8qp`8q “ ´8 as wanted (there is

no trick here, just simply computing the limit as a product).

Conversely, for the bonus limit, we can write lnp�q.�Ð “ ´Ð
lnp�q

�
for � “ �´Ð. But when

� Ñ 0`, � Ñ `8, and by one use6 of L’Hôpital rule, we know that
lnp�q

�
Ñ 0 when � Ñ `8.

6. By the method you like, determine the following limits:

6Indeed, both lnp�q and � go to `8, but
d

d�
plnp�qq “

1

�
and

d

d�
p�q “ 1, and

1

y

1
“

1

�
Ñ 0 when � Ñ `8 . . .
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(a) lim
�Ñ0

lnp1 ` �q
�

“ 1, by L’Hôpital rule,

(b) lim
�Ñ0

�� ´ 1

�
“ lnp�q again by L’Hôpital rule (here � ą 0),

(c) lim
�Ñ0

p1 ` �qÐ ´ 1

�
“ Ð also with L’Hôpital rule (here, Ð P R).

(d) lim
�Ñ`8

plnp�qq 1

x “ 1 because plnp�qq 1

x “ exp

ˆ

lnplnp�qq
�

˙

and lnplnp�qq{� Ñ 0 for � Ñ `8,

(e) lim
�Ñ0

pcosp�qq
1

sin2pxq “ 1?
�

.

First pcosp�qq
1

sin2pxq “ exp

ˆ

lnpcosp�qq
sin2p�q

˙

. But we also know that cosp�q ` �2

2
Ñ 1 for

� Ñ 0, and lnp1 ` �q{� Ñ 1 for � Ñ 0.

So lnpcosp�qq » ´�2

2
for � Ñ 0 and sin2p�q » �2 at 0. So

lnpcosp�qq
sin2p�q Ñ ´1

2
, and so

pcosp�qq
1

sin2pxq » expp´1{2q “ 1?
�

which is the limit.

(f) lim
�Ñ0`

psinp�qq
1

lnpxq “ e.

Similarly, we write psinp�qq
1

lnpxq “ expp lnpsinp�qq
lnp�q q. But sinp�q » � for � Ñ 0`, so

lnpsinp�qq will behave like lnp�q, therefore,
lnpsinp�qq

lnp�q Ñ 1 at 0` (ie, for � Ñ 0`). And

expp1q “ e.

(g) lim
�Ñ0`

�sinp�q “ 1.

We write �sinp�q as expplnp�q sinp�qq. At 0`, we know that � lnp�q Ñ 0 and
sinp�q

�
Ñ 1,

so lnp�q sinp�q Ñ 0, and so expplnp�q sinp�qq Ñ expp0q “ 1.

(h) lim
�Ñ`8

pe� ´ 1q 1

x “ e.

As previously, we write pe� ´ 1q 1

x “ exp

ˆ

lnpe� ´ 1q
�

˙

. But we know that lnpe� ´ 1q “

� ` lnp1 ´ e´�q, so
lnpe� ´ 1q

�
“ 1 ` lnp1 ´ e´�q

�
.

For � Ñ `8, 1 ´ e´� Ñ 1, so lnp1 ´ e´�q Ñ 0, and so
lnp1 ´ e´�q

�
Ñ 0.

Therefore, exp

ˆ

lnpe� ´ 1q
�

˙

Ñ expp1q “ e.

7. For �, � P R
˚
`, by using a simple convexity inequality with the correct function7, show

� lnp�q ` � lnp�q ě p� ` �q ln

ˆ

� ` �

2

˙

.

One thing we can say is that � : � ÞÑ � lnp�q is convex. Indeed, � is twice differentiable on R
˚
`,

and �1p�q “ lnp�q ` 1 so �2p�q “ 1

�
ą 0.
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And then, we just write the convexity inequality, with Ú “ 1

2
: �pÚ� ` p1 ´ Úq�q ď Ú�p�q `

p1 ´ Úq�p�q. But �p�q “ � lnp�q and p1 ´ Úq “ 1

2
, so we indeed have

p� ` �q
2

ln

ˆ

� ` �

2

˙

ď
�

2
lnp�q ` �

2
lnp�q, so p� ` �q ln

ˆ

� ` �

2

˙

ď � lnp�q ` � lnp�q, which is exactly what we wanted.

2 Solutions for “Exercises to do during or after tutorials”.

1. Solve, on the appropriate set, the following equation: ln |� ` 2| ` ln 3 ď ln |3� ´ 4|.

We know that lnp|�`2|q` lnp3q “ lnp3|�`2|q, so: ln |�`2|` ln 3 ď ln |3�´4| iff lnp3|�`2|q ď
lnp|3� ´ 4|q, but ln is increasing, so ln |� ` 2| ` ln 3 ď ln |3� ´ 4| iff 3|� ` 2| ď |3� ´ 4| iff . . .

iff � ď ´1

3
(by plotting the two graphs, or just solving it in details).

Finally, ln |� ` 2| ` ln 3 ď ln |3� ´ 4| iff � ď ´1

3
.

2. Precise the values (for �) when the following expressions have a sense, and try to simplify
them as much as possible:

(1) Let � ą 1. For �
lnplnpxqq

lnpxq , we remember that �� “ expp� lnp�qq for �, � ą 0. Here, �
lnplnpxqq

lnpxq “
exp

ˆ

lnplnp�qq
lnp�q lnp�q

˙

“ exp plnplnp�qqq “ lnp�q.

(2) Again, let � ą 1. For the second one, ln�pln�p�p�xqqq, we remember that ln� is the �-based

logarithm. So ln�pln�p�p�xqqq “ ln�p��q “ �, directly!

3. Decide which of the two numbers is greater:

For this kind of problem, there is no magical recipe, just try to use what you know.
Any simpler solution which use less additional facts is welcome.

(a) For eÞ or Þe:

We know that Þe “ ee lnpÞq. But e » 2.7182 and Þ ă 3.1416, so lnpÞq ă lnp3.1416q » 1.15,
so e lnpÞq ă 3.11 ă Þ.

So Þe ă eÞ, which can be verified numerically with a calculator.

(b) For 2
?

2 or e: We know that 2
?

2 “ e
?

2 lnp2q. But lnp2q ă 0.7 and
?

2 ă 1.42, so
?

2 lnp2q ă
0.993 ă 1. Therefore, e

?
2 lnp2q ă e0.993 ă e1 “ e.

Finally, 2
?

2 ă e, which can be verified numerically with a calculator.

(c) For lnp8q or 2.

Well, lnp8q “ lnp23q “ 3 lnp2q ą 3 ˚ 0.68 “ 2.04 ą 2, so lnp8q ą 2.

Remark 6. To be more rigorous, one should (be able to) prove the facts that have been used :
lnp2q » 0.693147,

?
2 » 1.414213, e » 2.718281 etc. More details on these ideas can be found

in the footnotes and references of a page like this one:
https://en.wikipedia.org/wiki/E_(mathematical_constant)#Known_digits.
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4. Compute the derivatives of the following functions, of course you will not forget to precise
their domains:

(1) �1 : � ÞÑ arccosp� ´ 1q, is defined on r0, 2s, because arccos is defined and continuous on
r´1, 1s.
And � 1

1p�q “ arccos1p� ´ 1q “ ´1
a

1 ´ p� ´ 1q2
“ ´1?

2� ´ �2
on p0, 2q, because arccos is

differentiable on p´1, 1q (and we check indeed that this expression of � 1
1 is valid only for

� P p´1, 1q).
(2) For �2 : � ÞÑ arctan |�|, we know that arctan is defined and continuous on R, so �2 is also

defined and continuous on R. And �2 is differentiable on R
˚ “ Rzt0u. On this domain8,

� 1
2p�q “ |�|

�

1

1 ` p|�|q2
, so � 1

2p�q “ 1

1 ` �2
if � ą 0 and � 1

2p�q “ ´1

1 ` �2
if � ă 0.

(3) For �3 : � ÞÑ arcsinhp
a

�2 ´ 1q, we know that arcsinh is defined and continuous on R

(because sinh is a bijection from R to R), and so �3p�q is defined iff �2 ´ 1 ě 0 iff
|�| ě 1 iff � P p´8, ´1s Y r1, 8q. And �3 is differentiable on this domain, except when
the square root is 0, ie |�| “ 1, so �3 is differentiable on p´8, ´1q Y p1, 8q. There,

� 1
3p�q “

ˆ

d

d�
p
a

�2 ´ 1q
˙

arcsinh1p
a

�2 ´ 1q “ �?
�2 ´ 1

ˆ 1
b

1 `
`?

�2 ´ 1
˘2

, so � 1
3p�q “

�?
�2 ´ 1

ˆ 1

|�| “ �

|�|
?

�2 ´ 1
.

Remark: for � ą 1, ℎp�q “ arccoshp�q in fact, thanks to the classic identity cosh2p�q ´
sinh2p�q “ 1 true for all � P R.

5. (Hard) For �, � P R, with � ‰ �, by using the concavity of tanh : r0, `8q Ñ R, � ÞÑ
tanh � “ e� ´ 1

e� ` 1
, show that

e� ´ e�

� ´ �
ă e� ` e�

2
.

Assume � ă � (if � ă �, we can just swap � and �). Then lets solve this inequality, with
patience:

e� ´ e�

� ´ �
ă e� ` e�

2
ðñ e� ´ e� ă � ´ �

2

´

e� ` e�
¯

ðñ e�´� ´ 1 ă � ´ �

2

´

e�´� ` 1
¯

8Note that
|�|

�
is usually written signp�q, the sign function (´1 if � ă 0, `1 if � ą 0).
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By dividing by e� on both sides, because e� ‰ 0. So we have:

e� ´ e�

� ´ �
ă e� ` e�

2
ðñ e�´� ´ 1

e�´� ` 1
ă � ´ �

2

ðñ e� ´ 1

e� ` 1
ă �

2
if we define � “ � ´ � ą 0

ðñ
˜

e�{2 ´ e´�{2

2

¸

ˆ

2

e�{2 ` e´�{2

˙

ă �

2

ðñ sinhp�{2q
coshp�{2q ă �

2

So
e� ´ e�

� ´ �
ă e� ` e�

2
ðñ tanhp�{2q ă �

2
with � “ � ´ � ą 0.

But tanhp�q ă � for all � ą 0, as we will prove in details here:

Indeed, tanh is twice differentiable, and for � ą 0, we have tanhp�q ă 1, tanh1p�q “
1 ´ tanh2p�q ą 0 and tanh2p�q “ ´2 tanh1p�q tanhp�q ă 0. And one property we know
tells us that tanh2 ă 0 implies that tanh is (strictly) concave on r0, `8q.
So graphically, the graph of tanh on r0, `8q will be smaller than any of its tangent
(this is also one property of the concavity).
But the tangent to this graph, at � “ 0, is exactly the line � “ �, so if the graph is
smaller than its tangent, we conclude that tanhp�q ă �.

Remark: this proof is the same as the one we did to show that sinp�q ă � for any
� ą 0.

Finally, we indeed have tanhp�{2q ă �{2 for any � ą 0, so the initial inequality is always true,
if � ă �.
And this inequality is symmetric in � and �, so proving it for � ă � is enough.

Conclusion: so we have, as wanted,
e� ´ e�

� ´ �
ă e� ` e�

2
, for any �, � P R such that � ‰ �.

Remark 7. Another method, using only the strict convexity of exp, is given here, thanks to
Prov. Vijaysekhar.

Without loss of generality, let � ă � and let � P p�, �q. Now, define Ú ” � ´ �

� ´ �
and note that Ú P

p0, 1q. Since the exponential is a strict convex function it follows that epÚ�`p1´Úq�q ă Úe� ` p1 ´
Úqe�, or, equivalently (substituting for Ú), e� ă �p�q, where �p�q “

ˆ

� ´ �

� ´ �

˙

e� `
ˆ

� ´ �

� ´ �

˙

e�.

Since, � P p�, �q it follows that �p�q ´ e� ą 0 for all � P p�, �q. Hence,

ż �

�

p�p�q ´ e�qd� ą 0. (2.1)

Now, note that

ż �

�

�p�qd� “ p� ´ �qpe� ` e�q{2 and

ż �

�

e�d� “ e� ´ e�, and hence, (2.1) implies

that p� ´ �qpe� ` e�q{2 ą e� ´ e�, yielding the desired result.
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6. We say that � : r0, `8q Ñ R is subadditive9 if, for any �1, �2 P p0, `8q, � satisfies
�p�1 ` �2q ď �p�1q ` �p�2q. Prove that:

(a) Assume that if � ÞÑ �p�q
�

is decreasing on p0, `8q, then lets prove that � is subadditive

on r0, `8q. Let �1 ď �2 P r0, `8q.
First, assume that �1 ‰ 0. We first have

�p�1 ` �2q
�1 ` �2

ď �p�2q
�2

because �1 ` �2 ě �2 and

the assumption on the variation of � ÞÑ �p�q
�

. So �p�1 ` �2q ď
ˆ

1 ` �1

�2

˙

�p�2q.

But �p�2q ď �2

�1

�p�1q again because � ÞÑ �p�q
�

is decreasing, and �1 ď �2 by assumption.

So

ˆ

1 ` �1

�2

˙

�p�2q ď �p�2q`�p�1q. We can then conclude that �p�1`�2q ď �p�1q`�p�2q.

And now if �1 “ 0, �p0q is finite, so necessarily
�p�q

�
Ñ

�Ñ0
˘8, but this limit has to be

positive because that function � ÞÑ �p�q
�

is decreasing. So in fact �p�q needs to converges

to a positive value when � Ñ 0, so �p0q ě 0, hence �p0q ď �p0q ` �p0q, and so finally we
have �p0 ` �2q ď �p0q ` �p�2q, as wanted.

And �1, �2 are any number in r0, `8q, with just the condition �1 ď �2. Obviously, if we
swap them, we still have the same result, so we conclude that � is indeed subadditive.

(b) Assume that � is convex and subadditive10 on r0, `8q, then we have to prove that � ÞÑ
�p�q

�
is a decreasing function (on that interval r0, `8q).

I have not been able to do it, any suggestion is welcome.

(c) We give here two examples of � such that � ÞÑ �p�q
�

is decreasing on r0, `8q,
• one with � being convex: � “ 0 works well, any constant works also!

• one with � not convex (harder): TODO.

7. Show that each of the equations sinpcosp�qq “ � and cospsinp�qq “ � has exactly one root
in r0, Þ{2s. Moreover, show that if �1 and �2 are the roots of the former and the latter
equation, respectively, then �1 ă �2.

Let �p�q “ sinpcosp�qq ´ � and �p�q “ cospsinp�qq ´ � on r0, Þ{2s. Both are continuous and
differentiable, and we have �p0q “ sinp1q ą 0 and �pÞ{2q “ sinp0q ´ Þ{2 “ ´Þ{2 ă 0.

So � is continuous on a closed interval, positive at the left limit of the interval (start value)
and negative at the right limit of the interval (end value). By the intermediate value theorem,
we can conclude that � has at least one root in r0, Þ{2s. That is a start, but it is not enough!

But � 1p�q “ ´ sinp�q cospcosp�qq ´ 1, and ´1 ă ´ sinp�q cospcosp�qq ă 1 on r0, Þ{2s, so ´2 ă
� 1p�q ă 0, ie � 1 ď 0 so � is (strictly) decreasing. Then11, � is in fact a bijection (one-to-one

10The initial exercise asked to work on � defined only on p0, `8q, but it was not enough to prove this part. We need
to be able to compute �p0q, which satifies �p0q ď �p0q ` �p0q, so . . .

11We use here the theorem of the monotonic bijection : if � : r�, �s Ñ rÐ, Ñs is continuous and monotonic (ie,
either strictly increasing or decreasing) then it is a bijection of inverse �

´1 : rÐ, Ñs Ñ r�, �s (this is a consequence of the
Intermediate Value Theorem). Please go read about it on the Thomas Calculus book if you want more details about
this (important) result.
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and one-by-one) between r0, Þ{2s and r�pÞ{2q, �p0qs “ r´Þ{2, sinp1qs. So there is only one
antecedent of 0, ie only one solution of the equation sinpcosp�qq “ �.

We can do the same for � : �1p�q “ ´ cosp�q sinpsinp�qq ´ 1 ă 0 so � is decreasing, and
�p0q “ 1 ą 0 and �pÞ{2q “ cosp1q ´ Þ{2 ă 0 because cosp1q ď 1 ă Þ{2.

Let �1 be the root of the first equation, and �2 of the second equation.

TODO: to conclude.

3 Solutions for “Bonus exercises”.

1. Show that the following functions �� are bijective (one-to-one and one-by-one), on the correct
sets, and try to find an expression for their inverse (��

´1) (precise their domain):

(1) �1 : � ÞÑ 3� ´ 5 is well defined on ��1
“ R.

For � P ��1
, � P R, � “ �1p�q iff � “ � ` 5

3
.

So the function �1 is indeed a bijection, from R to R, of inverse �1
´1 : � ÞÑ � ` 5

3
.

(2) �2 : � ÞÑ
?

3 ´ � is well defined on ��2
“ R.

For � P ��2
, � P R, � “ �2p�q iff � “

?
3 ´ �.

So the function �2 is indeed a bijection, from R to R, of inverse itself �2
´1 “ �2.

(3) �3 : � ÞÑ �2 ´ 1 is well defined on ��3
“ R´.

For � P ��3
, � P R, � “ �3p�q iff � “ �2 ´ 1 iff �2 “ � ` 1 so � ě ´1, and so as � ď 0, we

conclude that � “ �3p�q iff � “ ´
a

� ` 1.
So the function �3 is indeed a bijection, from r´1, `8q to R´, of inverse �3

´1 : � ÞÑ
´

?
� ` 1.

(4) �4 : � ÞÑ 1

3� ´ 2
is well defined on ��4

“ Rz
"

2

3

*

.

For � P ��4
, � P R, � “ �4p�q iff � “ 1

3� ´ 2
so � ‰ 0, and so � “ �4p�q iff � ‰ 0 and

� “
ˆ

1

�
` 2

˙

{3.

So the function �4 is indeed a bijection, from Rzt0u to Rz
"

2

3

*

, of inverse �4
´1 : � ÞÑ

ˆ

1

�
` 2

˙

{3.

(5) �5 : � ÞÑ 3� ` 2

2� ´ 1
is well defined on ��5

“ Rz
"

1

2

*

.

For � P ��5
, � P R, � “ �5p�q iff 3� ` 2 “ �p2� ´ 1q iff � ‰ 2{3 and � “ ´ 2 ` �

3 ´ 2�
.

So the function �5 is indeed a bijection, from Rz
"

2

3

*

to Rz
"

3

2

*

, of inverse �5
´1 : � ÞÑ

´ 2 ` �

3 ´ 2�
.

(6) �6 : � ÞÑ lnp2e� ´ 1q is well defined on ��6
“ p´ lnp2q, `8q.

For � P ��6
, � P R, � “ �6p�q iff 2e� ´ 1 “ e� iff � “ lnpe� ` 1q ´ lnp2q.

So the function �6 is indeed a bijection, from p´ lnp2q, `8q to R, of inverse �6
´1 : � ÞÑ

lnpe� ` 1q ´ lnp2q.
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2. Same functions as the previous exercise, but now study the derivability of the functions and
their inverses, then compute their derivatives. You can also try to look for some particular
points where the functions and their derivatives are canceled.

(1) �1 : � ÞÑ 3� ´ 5 is well differentiable on its domain (��1
“ R).

For � P ��1
, �1

1p�q “ 3.

And for any � P R, p�1
´1q1p�q “ 1

3
.

(2) �2 : � ÞÑ
?

3 ´ � is well differentiable on its domain (��2
“ R).

For � P ��2
, �2

1p�q “ ´1 “ p�2
´1q1p�q.

(3) �3 : � ÞÑ �2 ´ 1 is well differentiable on its domain (��3
“ R´).

For � P ��3
, �3

1p�q “ 2�.

And for the inverse, for � ě ´1, we have p�3
´1q1p�q “ ´ 1

2
?

� ` 1
.

(4) �4 : � ÞÑ 1

3� ´ 2
is well differentiable on its domain (��4

“ Rz
"

2

3

*

).

For � P ��4
, �4

1p�q “ ´3

p3� ´ 2q2
.

And for the inverse, for � ‰ 0, we have p�4
´1q1p�q “ ´1

3�2
.

(5) �5 : � ÞÑ 3� ` 2

2� ´ 1
is well differentiable on its domain (��5

“ Rz
"

1

2

*

).

For � P ��5
, �5

1p�q “ ´7

p2� ´ 1q2
.

And for the inverse, for � ‰ 3{2, we have p�5
´1q1p�q “ ´ 7

p2� ´ 3q2
.

(6) �6 : � ÞÑ lnp2e� ´ 1q is well differentiable on its domain (��6
“ p´ lnp2q, `8q).

For � P ��6
, �6

1p�q “ 2e�

2e� ´ 1
.

And for the inverse, for � ą 0, we have p�6
´1q1p�q “ e�

e� ´ 1
.

3. Solve the equation sinhp�q “ 3, without using a calculator nor the formula expressing
arcsinh as a logarithm.

For � P R, sinhp�q “ 3 iff e� ´ e´� “ 6 iff e2� ´ 6e� ´ 1 “ 0 iff �6 ´ 6� ´ 1 “ 0 with � “ e�.
We solve this quadratic equation in �, which has two solutions �1,2 “ 3 ˘

?
10, but � ą 0, so

� “ lnp�2q “ lnp3 `
?

10q is the only solution of the equation sinhp�q “ 3.

Remark 8. With the formula we know for arcsinh (inverse hyperbolic sine), we have sinhp�q “
3 iff � “ arcsinhp3q “ lnp3 `

a

1 ` 32q “ lnp3 `
?

10q, as we found directly.

4. Solve12 the equation
�

ÿ

�“0

sinhp2 ` ��q “ 0 for � P N.

Please, report any issue to MA101@crans.org 11 Mahindra École Centrale, 2014

http://www.MahindraEcoleCentrale.edu.in/portal/course/view.php?id=7
mailto:MA101_at_crans_._org
http://www.MahindraEcoleCentrale.edu.in/


Solutions for problems on usual functions MA101 December 9, 2014

Let ��p�q “
�

ÿ

�“0

sinhp2 ` ��q for � P R.

If � “ 0, ��p0q “ p� ` 1q sinhp2q ‰ 0 because � ` 1 ą 0 and sinhp2q ą 0 (sinhp2q » 3.6268), so
� “ 0 is not a solution.

Assume now that � ‰ 0. 2��p�q “
˜

�
ÿ

�“0

expp2 ` ��q
¸

´
˜

�
ÿ

�“0

expp´2 ´ ��q
¸

. But e� ‰ 1

because � ‰ 0.

So 2��p�q “ e2

˜

1 ´ ep�`1q�

1 ´ e�

¸

´ e´2

˜

1 ´ e´p�`1q�

1 ´ e´�

¸

by using twice the formula of the sum of

a geometric progression.

Hence 2��p�q “
˜

1 ´ ep�`1q�

1 ´ e�

¸

`

e´2 ´ e´��´2
˘

, and then we see that ��p�q “ 0 iff e´2´e´��´2

so iff ´2 “ ´�� ´ 2 iff � “ ´ 4

�
. Finally: ��p�q “ 0 ðñ � “ ´ 4

�
.

5. For two numbers �, � P R
˚
`, they satisfies this system:

"

arcsinhp�q “ 2 arcsinhp�q
3 lnp�q “ 2 lnp�q

iff � “ sinhp2 arcsinhp�qq “ 2� coshparcsinhp�qq “ 2�
a

1 ` �2 iff �3 “ �2.

6. Let �, � P R, solve the following equation (� being the unknown):

pcoshp�q ` sinhp�qqarcsinhp�´�q “ pcoshp�q ´ sinhp�qqarcsinhp�´�q
.

For one � P R, � is the solution of this equation iff expp� arcsinhp� ´ �qq “ expp´� arcsinhp� ´
�qq, so iff � parcsinhp� ´ �q ` arcsinhp� ´ �qq “ 0, so iff � “ 0 or � “ � ` �

2
.

7. Let �, � P R, show that, if � “ lnptan
´Þ

4
` �

2

¯

q, then: tanh
´�

2

¯

“ tan
´�

2

¯

, tanhp�q “

sinp�q and coshp�q “ 1

cosp�q .

• For the first one, tanh
´�

2

¯

“ e� ´ 1

e� ` 1
“ tan

`

Þ
4

` �
2

˘

` 1

tan
`

Þ
4

` �
2

˘

´ 1
“ tan

´�

2

¯

as wanted.

• For the second one, tanhp�q “ sin2

´Þ

4
` �

2

¯

´ cos2

´Þ

4
` �

2

¯

“ ´ cos
´Þ

2
` �

¯

“ sinp�q.

• For the last one, coshp�q “ 1

2

´

tan
´Þ

4
` �

2

¯

` arctan
´Þ

4
` �

2

¯¯

by definition of � in

function of �, and so coshp�q “ 1

sin
`

Þ
2

` �
˘ “ 1

cosp�q .
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8. Simplify the following expressions:

(i) arctanptan

ˆ

5Þ

6

˙

q “ ´Þ{6.

(ii) arctanpsin
´Þ

6

¯

q “ arctanp1{2q which cannot be simplified I think.

A numerical approximation is arctanp1{2q » 0.463647.

(iii) arctanpcos
´

´Þ

6

¯

q “ arctanp
?

3{2q which cannot be simplified I think.

A numerical approximation is arctanp
?

3{2q » 0.71372.

9. Study these expressions (one could try to look for some trick):

(1) For arccos

ˆ

1 ´ �2

1 ` �2

˙

` arcsin

ˆ

2�

1 ` �2

˙

(where � P R), we can use the change of variable

� “ tanp�

2
q, for � P p´Þ, Þq.

Then

ˆ

1 ´ �2

1 ` �2

˙

“ cosp�q and

ˆ

2�

1 ` �2

˙

“ sinp�q.

So the sum is arccos

ˆ

1 ´ �2

1 ` �2

˙

` arcsin

ˆ

2�

1 ` �2

˙

“ arccospcosp�qq ` arcsinpsinp�qq.
But ´Þ ă � ă Þ, so arccospcosp�qq “ � if � ě 0 and “ � ` 2Þ if � ă 0 (remember that
arccos : r´1, 1s Ñ r0, 2Þs by convention).

And arcsinpsinp�qq “ �, so finally the sum is arccos

ˆ

1 ´ �2

1 ` �2

˙

` arcsin

ˆ

2�

1 ` �2

˙

“ 2� “
4 arctan �.

(2) For �, � P R, with ��{ “ 1, arctan

ˆ

� ` �

1 ´ ��

˙

´ arctanp�q ´ arctanp�q “ �Þ, with � “ 0 if

�� ă 1, � “ 1 if �� ą 1, � ą 0 and � “ ´1 if �� ă 1 and � ă 0.

Let � “ arctanp�q, � “ arctanp�q. So tanp� ` �q “ tanp�q ` tanp�q
1 ´ tanp�q tanp�q “ � ` �

1 ´ ��
.

Finally, to conclude, we just need to observe that :

• � ` � P p´Þ{2, Þ{2q if �� ă 1,

• � ` � P pÞ{2, Þq if �� ą 1, and � ă 0,

• � ` � P p´Þ, ´Þ{2q if �� ą 1, and � ą 0.

For more details on this formula, which will be used in other exercices just below, please go
read https://en.wikipedia.org/wiki/Inverse_trigonometric_functions#Arctangent_addition_formula

10. Solve these equations.

Remark: here we write � “ � mod � (for three real numbers �, �, �), which means that
there is an integer � P Z such that � “ � ` ��.

(1) tanp3 arcsinp�qq “ 1 for � P r´1, 1s.
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First, study which values are not allowed: � can be a solution if 3 arcsinp�q ‰ Þ

2
mod Þ.

But 3 arcsinp�q “ Þ

2
mod Þ iff arcsinp�q P

"´3Þ

2
,

´Þ

2
,
Þ

2
,
3Þ

2

*

and so iff � P
"

´1, ´1

2
,
1

2
, 1

*

.

So let � P p´1, 1qz
"

´1

2
,
1

2

*

. Then tanp3 arcsinp�qq “ 1 iff 3 arcsinp�q “ Þ

4
mod Þ

iff arcsinp�q “ Þ

12
mod Þ iff arcsinp�q P

"´Þ

4
,

Þ

12
,
5Þ

2

*

. Finally, we conclude by

tanp3 arcsinp�qq “ 1 iff � P
"

´
?

2

2
, sin

´ Þ

12

¯

, sin

ˆ

5Þ

12

˙*

, which cannot be simplified

more I think.

(2) arctanp�q ` arctanp2�q “ Þ

5
iff tanparctanp�q ` arctanp2�qq “ 1. But we know that

arctanp�q ` arctanp�q “ arctan

ˆ

� ` �

1 ´ ��

˙

(for any �, � P R such that �� ‰ 1), so in this

case, � is a solution iff
3�

1 ´ 2�2
“ 1 so by solving this quadratic equation, and as � ą 0,

we conclude that the only possible solution is � “
?

17 ´ 1

4
.

(3) In order to solve arctan

ˆ

�

�

˙

` arctan

ˆ

� ´ �

� ` �

˙

“ Þ

5
(with �, � P N verifying 0 ă � ă �),

we will use the formula for a sum like arctanp�q ` arctanp�q.

So let � “ �

�
and � “

ˆ

� ´ �

� ` �

˙

. We have �, � ą 0. And �� “ă 1 because � ă 1, � ă 1. So:

arctan

ˆ

�

�

˙

` arctan

ˆ

� ´ �

� ` �

˙

“ arctan

¨

˝

�
�

` �´�
�`�

1 ´
´

�
�

¯ ´

�´�
�`�

¯

˛

‚

“ arctan

ˆ

�p� ` �q ` �p� ´ �q
�p� ` �q ´ �p� ´ �q

˙

“ arctan

ˆ

�2 ` �2

�2 ` �2

˙

“ arctanp1q “ Þ

2

arctan

ˆ

�

�

˙

` arctan

ˆ

� ´ �

� ` �

˙

“ Þ

2

So the equation has no solution, because arctan

ˆ

�

�

˙

` arctan

ˆ

� ´ �

� ` �

˙

is always Þ{2, so

cannot be Þ{5.

11. Compute these sums:

(1) Quickly: arctanp1q ` arctanp2q ` arctanp3q “ arctanp1q ` arctan

ˆ

2 ` 3

1 ´ 2 ˆ 3

˙

` Þ “ Þ

4
`

arctan

ˆ

5

´5

˙

` Þ “ Þ

2
´ Þ

2
` Þ “ Þ,

(2) With more details:

arctanp2q ` parctanp5q ` arctanp8qq “ arctanp2q ` parctan

ˆ

5 ` 8

1 ´ 5 ˆ 8

˙

` Þq
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Because if � “ 5, � “ 8, �, � ą 0, but �� ą 1.

arctanp2q ` arctanp5q ` arctanp8q “ arctanp2q ` arctan

ˆ

´13

39

˙

` Þ

“ parctanp2q ` arctan

ˆ

´1

3

˙

q ` Þ

“ ` arctan

ˆ

2 ˆ 3 ´ 1

3 ` 2

˙

` Þ

“ Þ

4
` Þ

arctanp2q ` arctanp5q ` arctanp8q “ 5Þ

4
.

Remark 9. We used twice the formula proved previously: arctanp�q`arctanp�q “ arctan

ˆ

� ` �

1 ´ ��

˙

`
�Þ, true for any �, � P R such that �� ‰ 1, with � “ 0 if �� ă 1, � “ 1 if �� ą 1, � ą 0 and
� “ ´1 if �� ă 1 and � ă 0.

12. For � P N
˚, and �1, . . . , �� P p0, Þq, let �

def“ 1

�

�
ÿ

�“1

��.

(a) To prove
�

ź

�“1

sinp��q ď psinp�qq�, we apply log on both sides, and prove that lnp
�

ź

�“1

sinp��qq ď

lnppsinp�qq�q.
Let � : p0, Þq Ñ R, � ÞÑ lnpsinp�qq. � is twice differentiable, and �1p�q “ cosp�q

sinp�q and

�2p�q “ ´1 ´ cos2p�q
sin2p�q ă 0 on p0, Þq. So �2 ă 0 implies that � is (strictly) concave on its

domain.

And thanks to the generalized concavity inequality (with � points), we have then �

ˆ

�1 ` ¨ ¨ ¨ ` ��

�

˙

ě
�p�1q ` ¨ ¨ ¨ ` �p��q

�
, so with the definition of this special point �, we conclude that

lnpsinp�qq ě lnpsinp�1qq ` ¨ ¨ ¨ ` lnpsinp��qq
�

.

Hence, by applying the increasing function exp on both sides, we conclude that
�

ź

�“1

sinp��q ď

psinp�qq�, as wanted.

(b) To prove
�

ź

�“1

sinp��q
��

ď
ˆ

sinp�q
�

˙�

, we do exactly the same, but with the function �2 :

p0, Þq Ñ R, � ÞÑ ln

ˆ

sinp�q
�

˙

, which is also concave.

Indeed, �2
1p�q “ cotp�q ´ 1

�
and �2

2p�q “ 1

�2
´ cot2p�q ´ 1 so �2

2p�q ă 0 on p0, Þq.

13. For � P R and � P R
˚
`, show that �� ď e� ` � plnp�q ´ 1qq.

Prove also that the inequality is an equality (ie, the equality holds) if and only if � “ e�.
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Let � ą 0 be a fixed real number, and � : R Ñ R, � ÞÑ e� ` �plnp�q ` 1q ´ ��. � is of class C
1

on R, and � 1p�q “ e� ´ � on R.
So � 1 is negative on p´8, lnp�qq, positive on plnp�q, `8q, and zero at lnp�q.
Hence � is decreasing on p´8, lnp�qq, increasing on plnp�q, `8q, and zero13 at lnp�q.
So we can conclude that @� P R, �p�q ě 0, and �p�q “ 0 iff � “ lnp�q (ie iff � “ e�).

Therefore we conclude that the inequality is true for every � P R, � ą 0, and the equality holds
iff � “ e�.

13Indeed, �plnp�qq “ � ` � lnp�q ´ � ´ lnp�q� “ 0. In fact, � has a global minimum at that point � “ lnp�q, and this
fact directly implies the inequality we wanted!
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