1 Homework

1.1. Show that the sequence $(\sqrt{n})_{n \in \mathbb{N}}$ diverges to $+\infty$.
1.2. Consider sequences where terms are given by following terms. Check if each of these sequences are convergent or divergent. If they are convergent then compute the limits.
(1) $u_{n} \triangleq \frac{n^{2}+3 n-4}{4 n^{2}+5}$,
(3) $u_{n} \triangleq \frac{n^{4}+7 n}{5 n^{4}+\cos \left(n^{2}\right)-\frac{1}{n}}$,
(2) $u_{n} \triangleq \frac{\sin \left(n^{2}\right)}{n}$,
(4) $u_{n} \triangleq \frac{a^{n}-b^{n}}{a^{n}+b^{n}}$, with $a, b \in \mathbb{R}_{+}^{*}$,
1.3. Show the following equalities:
(1) $\sum_{n=1}^{\infty} \frac{2 n+1}{n^{2}(n+1)^{2}}=1$,
(2) $\sum_{n=1}^{\infty} \frac{2^{n}+3^{n}}{6^{n}}=\frac{3}{2}$,
(3) $\sum_{n=1}^{\infty} \frac{1}{(2 n-1)(2 n+1)}=\frac{1}{2}$,
(4) $\sum_{n=2}^{\infty} \frac{\log \left[\left(1+\frac{1}{n}\right)^{n}(1+n)\right]}{\left(\log n^{n}\right)\left[\log (n+1)^{n+1}\right]}=\log _{2} \sqrt{e}$.
1.4. Use convergence tests to explore the convergence/divergence of the following series:
(1) $\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}$,
(4) $\sum_{n=1}^{\infty} \frac{1}{1000 n+1}$,
(2) $\sum_{n=1}^{\infty} \frac{|\sin n x|}{n^{2}}$,
(5) $\sum_{n=1}^{\infty} \frac{(n!)^{2}}{(2 n)!}$,
(3) $\sum_{n=2}^{\infty} \frac{n!}{(n+2)!}$,
(6) $\sum_{n=1}^{\infty} \frac{1000^{n}}{n!}$.

2 Tutorial Problems

2.1. Is the product sequence of two lower-bounded sequences still lowerbounded?
2.2. Show that a non-decreasing sequence is lower-bounded.
2.3. Let u be an integer sequence. Prove that u converges if and only if ${ }^{1}$ u is constant after a certain number of terms (that is, $\exists n_{0}$ such that $\left.\forall n \geq n_{0}, u_{n}=u_{n_{0}}\right)$.

[^0]2.4. Let u be a bounded sequence, satisfying: $\forall n \in \mathbb{N}^{*}, 2 u_{n} \leq u_{n-1}+u_{n+1}$. Let $v=\left(v_{n}\right)_{n \in \mathbb{N}}$ be given by $\forall n \in \mathbb{N}, v_{n} \triangleq u_{n+1}-u_{n}$. Show ${ }^{2}$ that v converges, and compute its limit.
2.5. Let u be a convergent sequence. Let v be a sub-sequence of u. Show that then v converges (to the same limit).
2.6. Consider $u \in \mathbb{R}^{\mathbb{N}}$ a real sequence (that is, a sequence with values being reals), and assume that the three sequences $\left(u_{2 n+1}\right)_{n \in \mathbb{N}},\left(u_{2 n}\right)_{n \in \mathbb{N}}$, $\left(u_{3 n}\right)_{n \in \mathbb{N}}$ are all converging. Then show that u converges (to the same limit, obviously).

3 Bonus Problems

3.1. Let u be a bounded sequence and v be a sequence diverging to $+\infty$. Show that $u+v$ diverges to $+\infty$.
3.2. Let u be a convergent sequence and v be a divergent sequence. Show that $u+v$ diverges. What can you say about the product sequence $(u . v)_{n} \triangleq u_{n} \cdot v_{n}, \forall n \in \mathbb{N}$?
3.3. Let u and v be two sequences converging to l et l^{\prime}, respectively. We consider the two sequences $w i$ and $w s$ defined by: $\forall n \in \mathbb{N}, w i_{n} \triangleq$ $\min \left\{u_{n}, v_{n}\right\}, w s_{n} \triangleq \max \left\{u_{n}, v_{n}\right\}$. Show that both the sequences $w i$ and ws converge and compute their limits.
3.4. Let u be a non-decreasing real sequence. If we assume that u has a sub-sequence which converges, then show that u also converges.

[^1]
[^0]: ${ }^{1}$ If and only if will be abbreviated iff.

[^1]: ${ }^{2}$ First prove that v is monotonic and bounded, then prove by contradiction that its limit is zero.

