1 Field Axioms

Let \mathbb{F} denote a set on which two binary operators \oplus) and \odot are defined, that is, $\oplus : \mathbb{F} \times \mathbb{F} \to \mathbb{F}$ and $\odot : \mathbb{F} \times \mathbb{F} \to \mathbb{F}$. Let $x, y \in \mathbb{F}$ then we denote the result of the \oplus operator as $x \oplus y$ and the \odot operator as $x \odot y$. Unless it is ambiguous we denote $x \odot y$ as simply xy. For the following axioms, let $x, y, z \in \mathbb{F}$.

- AXIOM 1.1 COMMUTATIVE LAWS: $x \oplus y = y \oplus x$ and xy = yx.
- AXIOM 1.2 ASSOCIATIVE LAWS: $x \oplus (y \oplus z) = (x \oplus y) \oplus z$ and x(yz) = (xy)z.
- AXIOM 1.3 DISTRIBUTIVE LAWS: $x(y \oplus z) = xy \oplus xz$.
- AXIOM 1.4 IDENTITY ELEMENTS: There exist two (distinct) real numbears 0 and 1 such that for every $x \in \mathbb{F}$, $x \oplus 0 = x$ and $x \odot 1 = x$.
- AXIOM 1.5 NEGATIVES: For every $x \in \mathbb{F}$ there exists $y \in \mathbb{F}$ such that $x \oplus y = 0$.
- AXIOM 1.6 RECIPROCALS: For every $x \in \mathbb{F} \setminus \{0\}$, there exists $y \in \mathbb{F} \setminus \{0\}$ such that xy = 1. We denote such y by x^{-1} , the *reciprocal* of x.
- **Theorem 1.1** Let $a, b, c, d \in \mathbb{F}$.

PROPERTY 1.1: If $a \oplus b = a \oplus c$ then b = c.

- PROPERTY 1.2: There exists a unique $x \in \mathbb{F}$ such that $a \oplus x = b$. (We denote x by b a. Specifically, 0 a is -a, the negative of a).
- PROPERTY 1.3: $b a = b \oplus (-a)$.
- PROPERTY 1.4: -(-a) = a.
- PROPERTY 1.5: a(b-c) = ab ac.
- PROPERTY 1.6: $0 \odot a = a \odot 0 = 0$.
- PROPERTY 1.7: If ab = ac and $a \neq 0$ then b = c.
- PROPERTY 1.8: If $a \neq 0$ then there exists a unique $x \in \mathbb{F}$ such that ax = b(we denote this x by b/a or $\frac{b}{a}$. Specifically, 1/a is a^{-1} , the reciprocal of a.).

PROPERTY 1.9: If $a \neq 0$ then $b/a = b \odot a^{-1}$.

PROPERTY 1.10: If $a \neq 0$ then $(a^{-1})^{-1} = a$. PROPERTY 1.11: If ab = 0 then a = 0 or b = 0. PROPERTY 1.12: (-a)b = -(ab) and (-a)(-b) = ab. PROPERTY 1.13: $\frac{a}{b} \oplus \frac{c}{d} = \frac{ad \oplus bc}{bd}$ if $b \neq 0$ and $d \neq 0$. PROPERTY 1.14: $\frac{a}{b}\frac{c}{d} = \frac{ac}{bd}$ if $b \neq 0$ and $d \neq 0$. PROPERTY 1.15: $\frac{a}{b}/\frac{c}{d} = \frac{ac}{bd}$ if $b \neq 0$, $c \neq 0$, and $d \neq 0$.

2 Problems

Problem 2.1 Prove Theorem 1.1.

Problem 2.2 Verify whether all the field axioms and all the properties of Theorem 1.1 hold for:

- (i) $\mathbb{F} = \mathbb{Z}$, the set of integers, $\oplus = +$, and $\odot = \cdot$, the usual addition and multiplication.
- (ii) $\mathbb{F} = \mathbb{Q}$, the set of rational numbers, $\oplus = +$, and $\odot = \cdot$, the usual addition and multiplication.
- (iii) Let n be a positive integer greater than 1 and let $\mathbb{F} = \{0, 1, 2, ..., n-1\}$. For $x, y \in \mathbb{F}$, defined $x \oplus y = (x + y) \mod n$ and $x \odot y = (xy) \mod n$. Furthermore, what is -1 in this case and check if (-1)(-1) = 1.
- (iv) Let S be a nonempty set and let \mathbb{F} be such that $x \in \mathbb{F}$ if and only if $x \subseteq S$, that is, \mathbb{F} contains all the subsets of S including \emptyset and S. Define $\oplus = \bigcup$ and $\odot = \cap$, the union and the intersection operators, respectively.