1 Field Axioms

Let \mathbb{F} denote a set on which two binary operators $\oplus)$ and \odot are defined, that is, $\oplus: \mathbb{F} \times \mathbb{F} \rightarrow \mathbb{F}$ and $\odot: \mathbb{F} \times \mathbb{F} \rightarrow \mathbb{F}$. Let $x, y \in \mathbb{F}$ then we denote the result of the \oplus operator as $x \oplus y$ and the \odot operator as $x \odot y$. Unless it is ambiguous we denote $x \odot y$ as simply $x y$. For the following axioms, let $x, y, z \in \mathbb{F}$.

Axiom 1.1 Commutative Laws: $x \oplus y=y \oplus x$ and $x y=y x$.
Axiom 1.2 Associative laws: $x \oplus(y \oplus z)=(x \oplus y) \oplus z$ and $x(y z)=(x y) z$.
Axiom 1.3 Distributive laws: $x(y \oplus z)=x y \oplus x z$.
Axiom 1.4 Identity elements: There exist two (distinct) real numbears 0 and 1 such that for every $x \in \mathbb{F}, x \oplus 0=x$ and $x \odot 1=x$.

Axiom 1.5 Negatives: For every $x \in \mathbb{F}$ there exists $y \in \mathbb{F}$ such that $x \oplus y=0$.

Axiom 1.6 Reciprocals: For every $x \in \mathbb{F} \backslash\{0\}$, there exists $y \in \mathbb{F} \backslash\{0\}$ such that $x y=1$. We denote such y by x^{-1}, the reciprocal of x.

Theorem 1.1 Let $a, b, c, d \in \mathbb{F}$.
Property 1.1: If $a \oplus b=a \oplus c$ then $b=c$.
Property 1.2: There exists a unique $x \in \mathbb{F}$ such that $a \oplus x=b$. (We denote x by $b-a$. Specifically, $0-a$ is $-a$, the negative of a).

Property 1.3: $b-a=b \oplus(-a)$.
Property 1.4: $-(-a)=a$.
Property 1.5: $a(b-c)=a b-a c$.
Property 1.6: $0 \odot a=a \odot 0=0$.
Property 1.7: If $a b=a c$ and $a \neq 0$ then $b=c$.
Property 1.8: If $a \neq 0$ then there exists a unique $x \in \mathbb{F}$ such that $a x=b$ (we denote this x by b / a or $\frac{b}{a}$. Specifically, $1 / a$ is a^{-1}, the reciprocal of a.).

Property 1.9: If $a \neq 0$ then $b / a=b \odot a^{-1}$.

Property 1.10: If $a \neq 0$ then $\left(a^{-1}\right)^{-1}=a$.
Property 1.11: If $a b=0$ then $a=0$ or $b=0$.
Property 1.12: $(-a) b=-(a b)$ and $(-a)(-b)=a b$.
Property 1.13: $\frac{a}{b} \oplus \frac{c}{d}=\frac{a d \oplus b c}{b d}$ if $b \neq 0$ and $d \neq 0$.
Property 1.14: $\frac{a}{b} \frac{c}{d}=\frac{a c}{b d}$ if $b \neq 0$ and $d \neq 0$.
Property 1.15: $\frac{a}{b} / \frac{c}{d}=\frac{a c}{b d}$ if $b \neq 0, c \neq 0$, and $d \neq 0$.

2 Problems

Problem 2.1 Prove Theorem 1.1.
Problem 2.2 Verify whether all the field axioms and all the properties of Theorem 1.1 hold for:
(i) $\mathbb{F}=\mathbb{Z}$, the set of integers, $\oplus=+$, and $\odot=\cdot$, the usual addition and multiplication.
(ii) $\mathbb{F}=\mathbb{Q}$, the set of rational numbers, $\oplus=+$, and $\odot=\cdot$, the usual addition and multiplication.
(iii) Let n be a positive integer greater than 1 and let $\mathbb{F}=\{0,1,2, \ldots, n-1\}$. For $x, y \in \mathbb{F}$, defined $x \oplus y=(x+y) \bmod n$ and $x \odot y=(x y) \bmod n$. Furthermore, what is -1 in this case and check if $(-1)(-1)=1$.
(iv) Let S be a nonempty set and let \mathbb{F} be such that $x \in \mathbb{F}$ if and only if $x \subseteq S$, that is, \mathbb{F} contains all the subsets of S including \emptyset and S. Define $\oplus=\cup$ and $\odot=\cap$, the union and the intersection operators, respectively.

