1 Homework

1.1. Show that sum of two functions which are individually continuous at a point is continuous at that point.
1.2. Compute the following left-hand side limits, right-hand side limits, and limits (if they exist):
(1) $\lim _{x \rightarrow 0} \frac{|x|}{x}$
(4) $\lim _{h \rightarrow 0} \frac{(t+h)^{2}-t^{2}}{h}$
(2) $\lim _{x \rightarrow 0} \frac{\sqrt{x^{2}}}{x}$
(5) $\lim _{x \rightarrow a} \frac{\sin x-\sin a}{x-a}$
(3) $\lim _{x \rightarrow 1} \frac{2 x^{2}-3 x+1}{x-1}$
(6) $\lim _{x \rightarrow 0} \frac{\sin 5 x}{\sin x}$
1.3. Use the fact that $|\sin x|<|x|$ for all $0<|x|<\frac{\pi}{2}$ to show that $\sin (\cdot)$ is continuous at 0 . Next, use the identity $\cos 2 x=1-2 \sin ^{2} x$ to show that $\cos (\cdot)$ is continuous at 0 . Finally, use the standard formulae for $\sin (x+h)$ and $\cos (x+h)$ to show that $\sin (\cdot)$ and $\cos (\cdot)$ are continuous everywhere in \mathbb{R}.
1.4. Let f be a polynomial of degree n such that the last and first coefficients have opposite signs. Prove that there exists a positive x such that $f(x)=$ 0 .

2 Tutorial Problems

2.1. Let f and g be given below and let $h=f \circ g$. In each case, determine the domains of f, g, and h and given direct formulae for h. Finally, investigate the continuity of h :
(1) $f(x)=x^{2}-2 x, g(x)=x+1$,
(3) $f(x)=\sqrt{x}, g(x)=x+\sqrt{x}$,
(2) $f(x)=\sqrt{x}, g(x)=x^{2}$,
(4) $f(x)=\sqrt{x}, g(x)=\sin x$.
2.2. If n is an odd positive integer and $a<0$ prove that there is exactly one negative b such that $b^{n}=a$.
2.3. Let $f(x)=\tan x$. Although $f(\pi / 4)=1$ and $f(3 \pi / 4)=-1$, there is no x in $[\pi / 4,3 \pi / 4]$ such that $f(x)=0$. Why does this not contradict the intermediate value theorem?
2.4. Let $f(x)=x \sin \left(\frac{1}{x}\right), x \neq 0$. What should be $f(0)$ so that f is continuous at 0 .
2.5. Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $|f(x)-f(y)| \leq L|x-y|$ for some $L \geq 0$. Show that f is continuous everywhere.
2.6. Let $f: \mathbb{Z} \rightarrow \mathbb{R}$ be well-defined. Show that f is continuous everywhere on \mathbb{Z}.

3 Bonus Problems

3.1. Let $f(x)=\sin \frac{1}{x}, x \neq 0$. Can we choose $f(0)$ such that f is continuous at 0 ? What about limit?
3.2. Show that the series $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ is convergent (this shows that e^{x} is welldefined for all $x \in \mathbb{R}$). Next, show that there exists $L>0$ such that $e^{x} \leq 1+L x$ for all $x \in[0,1]$. Finally, show that e^{x} is continuous at 0 and subsequently everywhere in \mathbb{R}.
3.3. Use the fact that e^{x} is continuous to show that $\log x$ is continuous in its domain.
3.4. Let $f:[0,1] \rightarrow \mathbb{R}$ be continuous everywhere in $[0,1]$. Assume that $0 \leq f(x) \leq 1, x \in[0,1]$. Show that there exists $c \in[0,1]$ such that $f(c)=c$.

