1 Exercises to do before tutorials.

Ex.1.1) Show that sum (f + g) of two functions (f, g) which are individually continuous at a point (x_0) is continuous at that point.

Answer: Let $\varepsilon > 0$.

- f is continuous at x_0 , so we have a $\delta_{f,\varepsilon} > 0$ such that $\forall x \in D_f, |x-x_0| < \delta_{f,\varepsilon} \implies |f(x) f(x_0)| < \frac{\varepsilon}{2}$.
- g is continuous at x_0 , so we have a $\delta_{g,\varepsilon} > 0$ such that $\forall x \in D_g, |x x_0| < \delta_{g,\varepsilon} \implies |g(x) g(x_0)| < \frac{\varepsilon}{2}$.

Let now define $\delta \stackrel{\text{def}}{=} \min(\delta_{f,\varepsilon}, \delta_{g,\varepsilon}) > 0$. If $x \in D_f \cap D_g = D_{f+g}$, and if $|x - x_0| < \delta$, then we have both $|x - x_0| < \delta_{f,\varepsilon}$ and $|x - x_0| < \delta_{g,\varepsilon}$, so we have $|(f+g)(x) - (f+g)(x_0)| \leq |f(x) - f(x_0)| + |g(x) - g(x_0)| \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$. Therefore, (f+g) is continuous at x_0 .

Ex.1.2) Compute the following left-hand side limits, right-hand side limits, and limits (if they exist):

(a) $\lim_{x \to 0^{-}} \frac{|x|}{x} = -1$, $\lim_{x \to 0^{+}} \frac{|x|}{x} = +1$, so no limit at 0. (b) Exactly the same, as $\sqrt{x^{2}} = |x|$. Hence, $\lim_{x \to 0^{-}} \frac{\sqrt{x^{2}}}{x} = -1$, $\lim_{x \to 0^{+}} \frac{\sqrt{x^{2}}}{x} = +1$, so no limit at 0. (c) $\lim_{x \to 1^{-}} \frac{2x^{2} - 3x + 1}{x - 1} = \lim_{x \to 1^{+}} \frac{2x^{2} - 3x + 1}{x - 1} = \lim_{x \to 1} \frac{2x^{2} - 3x + 1}{x - 1} = 1$. (d) $\lim_{x \to 0^{-}} \frac{(t + h)^{2} - t^{2}}{h} = \lim_{x \to 0^{+}} \frac{(t + h)^{2} - t^{2}}{h} = \lim_{x \to 0} \frac{(t + h)^{2} - t^{2}}{h} = 2t$, because $\frac{(t + h)^{2} - t^{2}}{h} = \frac{2th + h^{2}}{h} = \frac{2th + h^{2}}{h} = \frac{1}{h}$. (e) $\lim_{x \to a^{-}} \frac{\sin x - \sin a}{x - a} = \lim_{x \to a^{+}} \frac{\sin x - \sin a}{x - a} = \lim_{x \to a} \frac{\sin x - \sin a}{x - a} = 1$, (f) $\sin(\theta) \underset{\theta \to 0}{\simeq} \theta$, so $\lim_{x \to 0} \frac{\sin 5x}{\sin x} = 5$.

Ex.1.3) Use the fact¹ that $|\sin(x)| < |x|$, true for all $0 < |x| < \frac{\pi}{2}$ to show that sin is continuous at 0. Next, use the identity $\cos(2x) = 1 - 2\sin^2(x)$ ($\forall x \in \mathbb{R}$) to show that cos is also continuous at 0. Finally, use the standard formula for $\sin(x+h)$ and $\cos(x+h)$ to show that sin and cos are continuous everywhere on \mathbb{R} .

Answer: We have $\sin(0) = 0$. Let $\varepsilon > 0$, and define $\delta = \varepsilon$. If $0 < |x - 0| < \delta$, then $|\sin(x) - \sin(0)| = |\sin(x)| < |x| < \varepsilon$. So, by definition, sin is continuous at 0.

Let call $f: y \mapsto 1 - 2y^2$. f is a polynomial function, so it is of course continuous everywhere. Thanks to the composition property, $f \circ \sin i$ is still continuous on 0. But the given identity say $\cos(x) = (f \circ \sin)(\frac{x}{2})$, and $g: x \mapsto \frac{x}{2}$ is also continuous at 0. So $\cos = (f \circ \sin) \circ g = f \circ \sin \circ g$ is continuous at 0.

For $x, h \in \mathbb{R}$, we have $\sin(x+h) = \sin(x)\cos(h) + \cos(x)\sin(h)$. So if $h \to 0$, $\sin(x+h) \to \sin(x)\cos(0) + \cos(x)\sin(0)$, but $\cos(0) = 1$, $\sin(0) = 0$, so $\sin(x+h) \to \sin(x)$, which is saying that sin is continuous at that point x.

And similarly, for $x, h \in \mathbb{R}$, we have $\cos(x+h) = \cos(x)\cos(h) - \sin(x)\sin(h)$. So if $h \to 0$, $\cos(x+h) \to \cos(x)\cos(0) - \sin(x)\sin(0)$, so $\cos(x+h) \to \cos(x)$, which is saying that \cos is continuous at that point x.

Ex.1.4) Let f be a real polynomial function of degree n > 0 such that the last and first coefficients have opposite signs. Prove² that there exists a positive x (*i.e.* $x \in \mathbb{R}^*_+$) such that f(x) = 0.

¹You can also try to prove that fact.

²You should start by naming all these coefficients $a_0, \ldots, a_n \in \mathbb{R}$, and use contradiction ("if f has no zero in \mathbb{R}^*_+ , then ...")

Answer: Let start by naming these coefficients: for $x \in \mathbb{R}$, f(x) can be written as $a_0 + a_1x + \cdots + a_{n-1}x^{n-1} + a_nx^n = \sum_{k=0}^n a_kx^k$, with $a_0, a_1, \ldots, a_n \in \mathbb{R}$ being the (real) coefficients of this polynomial function, and $a_n \neq 0$ (because f is of degree exactly n).

The hypothesis is $a_0a_n < 0$ (they have a different sign). If $f(0) = a_0 = 0$, then x = 0 is already good to have f(x) = 0.

Assume now that $a_0 \neq 0$. If $a_n < 0$, we have $f(x) \xrightarrow[x \to +\infty]{} -\infty$, and if $a_n > 0$, we have $f(x) \xrightarrow[x \to +\infty]{} +\infty$.

- First case is if $a_0 < 0$. Then by the hypothesis of a_0 and a_n being of different signs, we have $a_n > 0$. So $f(x) \xrightarrow[x \to +\infty]{} +\infty$. That is, we can find a A > 0 such that f(A) > 1 (direct application of the definition of $\xrightarrow[x \to +\infty]{} +\infty$). Then we can we BOLZANO's theorem in [0, A], because f(0) < 0, f(A) > 0. There we have a $x_1 \in (0, A)$ such that $f(x_1) = 0$.
- The other case is if $a_0 > 0$, and we do the same. We have $a_n > 0$. So $f(x) \xrightarrow[x \to +\infty]{} -\infty$. That is, we can find a B > 0 such that f(B) < -1 (direct application of the definition of $\xrightarrow[x \to +\infty]{} +\infty$). Then we can we BOLZANO's theorem in [0, B], because f(0) > 0, f(B) < 0. There we have a $x_2 \in (0, B)$ such that $f(x_2) = 0$.

In both cases, we have at least on $x \ge 0$ such that f(x) = 0.

2 Exercises to do during or after tutorials.

- Ex.2.1) Let f and g be given below and let $h = f \circ g$. In each case, determine the domains of f, g, and h and given direct formula for h. Finally, investigate the continuity of h:
 - (i) $f(x) = x^2 2x$, g(x) = x + 1, (ii) $f(x) = \sqrt{x}$, $g(x) = x^2$, (iii) $f(x) = \sqrt{x}$, $g(x) = x^2$, (iv) $f(x) = \sqrt{x}$, $g(x) = \sin(x)$.

Answer:

- (i) f and g are both defined and continuous on \mathbb{R} . So h is also continuous on \mathbb{R} . For $x \in \mathbb{R}$, $h(x) = (f \circ g)(x) = f(x+1) = (x+1)^2 2(x+1) = x^2 + 2x + 1 2x 2 = x^2 1$.
- (ii) $D_f = \mathbb{R}_+$, and $D_g = \mathbb{R}$, on which f and g are continuous. But $g(x) \ge 0$ for all x, so $h = f \circ g$ is well defined for all $x \in \mathbb{R}$. Hence h is also continuous on \mathbb{R} . For $x \in \mathbb{R}$, $h(x) = (f \circ g)(x) = f(x^2) = \sqrt{x^2} = |x|$.
- (iii) $D_f = D_g = \mathbb{R}_+$ because of the \sqrt{x} in their expression, and f and g are continuous on their domains. But $g(x) \ge 0$ for all $x \ge 0$, so $h = f \circ g$ is well defined for all $x \in \mathbb{R}_+$. Hence h is also continuous on \mathbb{R}_+ . For $x \in \mathbb{R}_+$, $h(x) = (f \circ g)(x) = f(x + \sqrt{x}) = \sqrt{x + \sqrt{x}}$.
- (iv) $D_f = \mathbb{R}_+$, and $D_g = \mathbb{R}$, on which f and g are continuous. But $g(x) \ge 0 \le x \in [0, \pi] + 2\pi\mathbb{Z}$, so $h = f \circ g$ is well defined on $[0, \pi] + 2\pi\mathbb{Z}$, and it is obviously continuous on this domain. For $x \in [0, \pi] + 2\pi\mathbb{Z}, h(x) = (f \circ g)(x) = f(\sin(x)) = \sqrt{\sin(x)}$.
- Ex.2.2) If n is an odd positive integer $(n \in 2\mathbb{N} + 1)$ and a < 0 prove that there is exactly one negative b < 0 such that $b^n = a$. And what happens if n is even?

Quick answer: If $n \in 2\mathbb{N} + 1$, write n as 2k + 1, with $k \in \mathbb{N}$. Let $x \stackrel{\text{def}}{=} \sqrt[n]{|a|}$, and $b \stackrel{\text{def}}{=} -x$, then $b^n = (-1)^n x^n = (-1)^{2k+1} a = -a$. So that wass for *existence*. And for *uniqueness*, it comes³ from the fact that $t \mapsto t^n$ is strictly increasing in that case (where n is odd).

If n is even, there is no possible solution, as n = 2k gives $b^n = (b^k)^2 > 0$ if $b \neq 0$.

 $^{^3\}mathrm{We}$ should justify this step more precisely, if possible. Do it yourself to practice.

MA101

Ex.2.3) Let $f = \tan$ (on a certain domain you should precise). Although $f(\pi/4) = 1$ and $f(3\pi/4) = -1$, there is no x in $[\pi/4, 3\pi/4]$ such that f(x) = 0. Why does this not contradict the *intermediate value theorem*?

Answer: tan is not continuous on $[\pi/4, 3\pi/4]$ because it is not defined on $[\pi/2]$: $\lim_{x \to \pi/2^-} \tan(x) = +\infty$, but $\lim_{x \to \pi/2^+} \tan(x) = -\infty$. And the *intermediate value theorem* is only for continuous function on an interval [a, b].

Ex.2.4) Let $f : \mathbb{R} \to \mathbb{R}, x \mapsto x \sin\left(\frac{1}{x}\right)$ if $x \neq 0$. What should be the value of f(0) so that f is continuous at 0.

Short answer: f(0) have to be 0. Indeed, for $x \in \mathbb{R}^*$, $-x \leq x \sin(\frac{1}{x}) \leq x$ so $f(x) \underset{x \neq 0, x \to 0}{\rightarrow} 0$.

Ex.2.5) For $a, b \in \mathbb{R}, a < b$, let $f : [a, b] \to \mathbb{R}$ be such that $\forall x, y \in [a, b], |f(x) - f(y)| \leq L \times |x - y|$, for some $L \geq 0$. Show that f is continuous on [a, b].

Answer: If L = 0, then f is constant so obviously continuous.

Assume L > 0. Let $x_0 \in [a, b]$ and $\varepsilon > 0$. We choose $\delta(\varepsilon) = \frac{\varepsilon}{L} > 0$. For $y \in [a, b]$, if $|x_0 - y| < \delta(\varepsilon)$, then $|f(y) - f(x_0)| \leq L|x_0 - y| \leq L\delta(\varepsilon) = L\frac{\varepsilon}{L} = \varepsilon$. So by definition, f is continuous at x_0 . And x_0 was any $x_0 \in [a, b]$, so f is continuous on all [a, b].

Ex.2.6) Let $f : \mathbb{Z} \to \mathbb{R}$ be well-defined. Show that f is continuous everywhere on \mathbb{Z} .

Quick answer: We just use the " $\varepsilon, \delta(\varepsilon)$ " definition, because if $\delta(\varepsilon) < 1, x, y \in \mathbb{Z}$, then $(|x - y| < \delta(\varepsilon) \implies x = y)$.

So, for one $x_0 \in \mathbb{Z}$, let take $\varepsilon > 0$. If we choose $\delta(\varepsilon) = \frac{1}{2} > 0$, then we observe that we have, for every $y \in \mathbb{Z}$, $|x_0 - y| < \delta(\varepsilon) \implies x_0 = y \implies |f(x_0) - f(y)| = 0 < \varepsilon$. So f is continuous at this x_0 .

3 Bonus exercises.

Ex.3.1) Let $f : \mathbb{R} \to \mathbb{R}, x \mapsto \sin\left(\frac{1}{x}\right)$ if $x \neq 0$. Can we choose f(0) such that f is continuous at 0? What about limit?

Answer: The answer is no.

Let prove it, by defining $u_n = \frac{1}{\pi/2 + 2n\pi}$ and $v_n = \frac{1}{3\pi/2 + 2n\pi}$ for $n \in \mathbb{N}$. This define two sequences u and v. Observe that $u_n > 0, v_n > 0$ for every n.

For $n \in \mathbb{N}$, $f(u_n) = \sin(\pi/2 + 2n\pi) = \sin(\pi/2) = 1$, and $f(v_n) = \sin(3\pi/2 + 2n\pi) = \sin(3\pi/2) = -1$. But $u_n \xrightarrow[n \to +\infty]{} 0$, and $v_n \xrightarrow[n \to +\infty]{} 0$.

So if we were able to give a value to f(0) for f to be continuous at 0, then we would have both $1 = \lim_{n \to +\infty} f(u_n) = f(\lim_{n \to +\infty} u_n) = f(0)$ and $-1 = \lim_{n \to +\infty} f(v_n) = f(\lim_{n \to +\infty} v_n) = f(0)$. That is absurd, as f(0) cannot be 1 and -1.

Conclusion, we cannot choose a value for f(0) to f to be continuous at 0.

Please, report any issue to MA101@crans.org

 $^{{}^{4}}f$ is said to be *L*-LIPSCHITZ, or LIPSCHITZ continuous of ratio *L* on [a, b].

Ex.3.2) For $x \in \mathbb{R}$, show that the series $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ is convergent (this shows that e^x is well-defined for all $x \in \mathbb{R}$). Next, show that there exists $\lambda > 0$ such that $e^x \leq 1 + \lambda x$ for all $x \in [0, 1]$. Finally, show that $\exp : x \mapsto e^x$ is continuous at 0, and subsequently everywhere in \mathbb{R} .

Answer: By ratio test, it is obvious, because if $a_n \stackrel{\text{def}}{=} \frac{x^n}{n!}$, then $a_n \neq 0$ for any $n \in \mathbb{N}$, and $\frac{a_{n+1}}{a_n} = \frac{x}{n} \xrightarrow[n \to +\infty]{} 0 < 1$. So that series is convergent for any $x \in \mathbb{R}$.

We know that $\exp : x \mapsto e^x$ is strictly convex on [0,1], so a good λ can be such that $e^0 + \lambda \times 1 = e^0 + e^1$, *i.e.* $\lambda = e^1 = e$. Indeed, thanks to convexity, we know that "the curve is always below a string". The equation of the *curve* is $y = e^x$, the equation of the *string* (from x = 0 to x = 1) is $y = \exp(0) + \frac{\exp(1) - \exp(0)}{1 - 0}x = 1 + e \times x$.

Therefore, with $\lambda \stackrel{\text{def}}{=} \exp(1) = e$, we have $|e^x - 1| \leq \lambda x$ for all $x \in [0, 1]$. Let $\varepsilon > 0$. Now choose $\delta(\varepsilon) \stackrel{\text{def}}{=} \frac{\varepsilon}{\lambda} > 0$, then if $|x - 0| = |x| = x < \delta(\varepsilon)$, then $|e^x - e^0| = |e^x - 1| \leq \lambda x < \lambda \delta(\varepsilon) = \lambda \frac{\varepsilon}{\lambda} = \varepsilon$. So by definition of being continous at $x_0 = 0$, exp : $x \mapsto e^x$ is continuous at 0.

Let $x_0 \in \mathbb{R}$. For $h \neq 0$, we have $\exp(x_0 + h) = e^{x_0 + h} = e^{x_0} \times e^h$. Thanks to continuity at 0, proved previously, we know that $e^h \to 1$, we have $\exp(x_0 + h) \to e^{x_0} \times 1 = e^{x_0} = \exp(x_0)$. So exp is continuous in x_0 . Hence, exp is continuous on \mathbb{R} .

Ex.3.3) Use the fact that $\exp : x \mapsto e^x$ is continuous to show that $\ln : x \mapsto \ln x$ is continuous in its domain.

Answer: We know that the reciprocal of a continuous function is continuous on the correct domain. We could prove it, but hey work by yourself from time to time.

Ex.3.4) Let $f : [0,1] \to \mathbb{R}$ be continuous on [0,1]. Assume that $\forall x \in [0,1], 0 \leq f(x) \leq 1$. Show that there exists $c \in [0,1]$ such that f(c) = c.

Answer: Let $g: [0,1] \to \mathbb{R}, x \mapsto f(x) - x$. g is continuous on [0,1] because f is. And $g(0) = f(0) - 0 = f(0) \ge 0$ and $g(1) = f(1) - 1 \le 0$.

If g(0) = 0, then $c_1 \stackrel{\text{def}}{=} 0$ is good to have $f(c_1) = c_1$.

If g(1) = 0, then here $c_2 \stackrel{\text{def}}{=} 1$ is also good to have $f(c_2) = c_2$.

Now assume that $g(0) \neq 0$, and $g(1) \neq 1$. So g(0) > 0 and g(1) < 0 (by the hypothesis on $0 \leq f(x) \leq 1$). By using BOLZANO's theorem to g on [0,1], we conclude that there is $c_3 \in (0,1)$ such that $g(c_3) = 0$ *i.e.* $f(c_3) = c_3$.

Hence, in every case, we have one $c \in [0, 1]$ such that f(c) = c, which is what we wanted. Victory!

Ex.3.5) Is it possible to have a function $f : \mathbb{R} \to \mathbb{R}$, well-defined everywhere, but continuous **nowhere**? Remember that \mathbb{Q} is the set of rationals numbers, dense in \mathbb{R} . Show that $\mathbb{1}_{\mathbb{Q}}$ ($\mathbb{R} \to \mathbb{R}, x \mapsto 1$ if $x \in \mathbb{Q}, 0$ otherwise) is continuous nowhere, by using a sequence $(r_n)_{n \in \mathbb{N}} \in \mathbb{R}$

Show that $\mathbb{I}_{\mathbb{Q}}$ ($\mathbb{R} \to \mathbb{R}, x \mapsto 1$ if $x \in \mathbb{Q}$, 0 otherwise) is continuous howhere, by using a sequence $(r_n)_{n \in \mathbb{N}} \in \mathbb{Q}^{\mathbb{N}}, r_n \xrightarrow[n \to +\infty]{} \alpha$ for a $\alpha \in \mathbb{R} \setminus \mathbb{Q}$, to show that $\mathbb{I}_{\mathbb{Q}}$ is not continuous at α , (and conversely $(\beta_n)_{n \in \mathbb{N}} \in (\mathbb{R} \setminus \mathbb{Q})^{\mathbb{N}}, \beta_n \xrightarrow[n \to +\infty]{} q$ for a $q \in \mathbb{Q}$, for non-continuity at q).

Quick answer: First of all, for $q \in \mathbb{Q}, \alpha \in \mathbb{R} \setminus \mathbb{Q}$, we can justify the existence of these two sequences r and β thanks to density of \mathbb{Q} in \mathbb{R} (and $\mathbb{R} \setminus \mathbb{Q}$ in \mathbb{R}).

By using all these notations, if f is continuous at q, then $f(\beta_n) \xrightarrow[n \to +\infty]{} f(q)$, but $\forall n \in \mathbb{N}$, $f(\beta_n) = 0$ because $\beta_n \notin \mathbb{Q}$, and f(q) = 1. As $0 \neq 1$, f cannot be continuous at q. The same stands for continuity at α .