Some solutions for Limits and Continuity MA101 December 9, 2014

1 Exercises to do before tutorials.

Ex.1.1) Show that sum (f + g) of two functions (f, ¢g) which are individually continuous at a point (xq) is
continuous at that point.

Answer: Let € > 0.
e fiscontinuous at gy, so we have a 07 . > 0 such that Vo € Dy, |[z—x¢| < 05 = |f(x)—f(z0)| <

e g is continuous at x¢, so we have a §, . > 0 such that Vo € Dy, |[z—x¢| < 5. = |g(z)—g(x0)| <

NCRRON NG

Let now define § = min(d;.,d,.) > 0. If r€ Dy n Dy = Dy, and if |z — 20| < J, then we have both
|z —xo| < 05 and [z —xo| < g.c, s0 we have |(f+g)(x) = (f +9)(wo)| < [f(2) = f(z0)[ +|g(x) —g(0)| <

3 + ;=€ Therefore, (f + g) is continuous at zg.

Ex.1.2) Compute the following left-hand side limits, right-hand side limits, and limits (if they exist):

(a) lim Jzl =—1, lim Jl = +1, so no limit at 0.
r—0—- T x—0+ T
N N
(b) Exactly the same, as V2 = |z|. Hence, lim A -1, lim AL +1, so no limit at 0.
z—0- I z—0+ T
o222 —3x+1 o222 -3z +1 o222 -3z +1
(¢) im ———— = lim —— =lim ——— = 1.
z—1- rz—1 z—1+ r—1 z—1 rx—1
t+h)? —t? t+h)?—t2 t+h)?—t2 t+h)?2 -t 2th+h?
2t +h — 2t
(¢) lim sinx —sina ~ lim sinx —sina ~ fim sinx — sina _1
r—a— Tr—a r—at Tr—a T—a Tr—a
in 5
(f) sin(0) ~ 6, so lim 2o’ — 5
0—0 z—0 SInx

Ex.1.3) Use the fac that |sin(z)| < |z|, true for all 0 < |z| < g to show that sin is continuous at 0. Next, use

the identity cos(2z) = 1 — 2sin?(z) (Vo € R) to show that cos is also continuous at 0. Finally, use the
standard formula for sin(z + h) and cos(z + h) to show that sin and cos are continuous everywhere on R.

Answer: We have sin(0) = 0. Let € > 0, and define § = . If 0 < |z — 0| < §, then |sin(x) — sin(0)| =
|sin(z)| < |x| < e. So, by definition, sin is continuous at 0.
Let call f:y+— 1—2y% f is a polynomial function, so it is of course continuous everywhere. Thanks to

x
the composition property, fosin is still continuous on 0. But the given identity say cos(z) = (f osin)(i),

T
and g:x — 5 is also continuous at 0. So cos = (f osin) o g = f osino g is continuous at 0.

For z, h € R, we have sin(z + h) = sin(x) cos(h) + cos(x) sin(h). So if h — 0, sin(z + h) — sin(z) cos(0) +
cos(z) sin(0), but cos(0) = 1,sin(0) = 0, so sin(z + h) — sin(x), which is saying that sin is continuous at
that point z.

And similarly, for z, h € R, we have cos(z + h) = cos(z) cos(h) —sin(x) sin(h). So if h — 0, cos(x + h) —
cos(x) cos(0) — sin(x) sin(0), so cos(xz + h) — cos(z), which is saying that cos is continuous at that point
x.

Ex.1.4) Let f be a real polynomial function of degree n > 0 such that the last and first coefficients have opposite
signs. Proveﬂ that there exists a positive z (i.e. x € RY) such that f(z) = 0.

1You can also try to prove that fact.
2You should start by naming all these coefficients ao,...,an € R, and use contradiction (“if f has no zero in Rj, then ...”)
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Ex.2.1)

Ex.2.2)

Answer: Let start by naming these coefficients: for x € R, f(z) can be written as ag + a1z + -+ +
n

p_12" 1 + apz™ = Z apx®, with ag,ai,...,a, € R being the (real) coefficients of this polynomial
k=0
function, and a,, # 0 (because f is of degree exactly n).

The hypothesis is aga, < 0 (they have a different sign). If f(0) = ap = 0, then z = 0 is already good to
have f(z) = 0.

Assume now that ag # 0. If a,, <0, we have f(x) R and if a,, > 0, we have f(x) 7, o
r—+00 T—+00

e First case is if ag < 0. Then by the hypothesis of ay and a,, being of different signs, we have a,, > 0.
So f(sr:)w_)—:LOO +00. That is, we can find a A > 0 such that f(A) > 1 (direct application of the
definition of e +0). Then we can we BOLZANO’s theorem in [0, A], because f(0) < 0, f(A) > 0.
There we have a x1 € (0, A) such that f(z1) = 0.

e The other case is if ap > 0, and we do the same. We have a,, > 0. So f(x) o T That is, we
can find a B > 0 such that f(B) < —1 (direct application of the definition of e +00). Then

we can we BOLZANO’s theorem in [0, B], because f(0) > 0, f(B) < 0. There we have a x5 € (0, B)
such that f(xz2) = 0.

In both cases, we have at least on & > 0 such that f(z) = 0.

Exercises to do during or after tutorials.

Let f and g be given below and let h = f o g. In each case, determine the domains of f, g, and h and
given direct formula for h. Finally, investigate the continuity of h:

(i) f(z) = 2% — 2, g(a) = 2+ 1, (it)) f(z) = V&, g(x) = = + v,
(i) f(z) = V&, g(z) = 2?, (iv) f(x) = V&, g(x) = sin(z).

Answer:

(i) f and g are both defined and continuous on R. So h is also continuous on R. For z € R, h(z) =
(fog)x)=flx+1)=(x+1)2-2@+1) =2 +20+1-20-2=2—1.

(i) Dy = Ry, and Dy = R, on which f and g are continuous. But g(z) > 0 for all z, so h = fogis
well defined for all z € R. Hence h is also continuous on R. For € R, h(z) = (f o g)(z) = f(z?) =
Va2 = |z|.

(iii) Dy = Dy = R4 because of the 4/z in their expression, and f and g are continuous on their domains.
But g(z) = 0 for all z = 0, so h = f o g is well defined for all z € R;. Hence h is also continuous

onR,. Forz e Ry, h(z) = (fog)(x) = f(z + ) =r/z +z.

(iv) Dy = R4, and D, = R, on which f and g are continuous. But g(z) > 0 <> z € [0, 7] + 27Z,
so h = fog is well defined on [0, 7] + 27Z, and it is obviously continuous on this domain. For

x € [0,7] + 27Z,h(z) = (f o g)(x) = f(sin(x)) = +/sin(z).

If n is an odd positive integer (n € 2N + 1) and a < 0 prove that there is exactly one negative b < 0 such
that b” = a. And what happens if n is even?

Quick answer: If n € 2N + 1, write n as 2k + 1, with k € N. Let 2 % {/]a|, and b & —z, then
bt = (—1)"2" = (—=1)**1a = —a. So that wass for existence. And for uniqueness, it comesﬁ from the
fact that t — t" is strictly increasing in that case (where n is odd).

If n is even, there is no possible solution, as n = 2k gives b™ = (b¥)% > 0 if b # 0.

3We should justify this step more precisely, if possible. Do it yourself to practice.
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Ex.2.3)

Ex.2.4)

Ex.2.5)

Ex.2.6)

Ex.3.1)

Let f = tan (on a certain domain you should precise). Although f(7/4) = 1 and f(37/4) = —1, there is
no z in [r/4,3n/4] such that f(z) = 0.
Why does this not contradict the intermediate value theorem?

Answer: tan is not continuous on [7/4, 37 /4] because it is not defined on [7/2] : lim tan(x) = +oo,

z—w/27

but lim +tan(m) = —o0. And the intermediate value theorem is only for continuous function on an
z—w/2

interval [a, b].

1
Letf:RaR,xr—»xsin() if x #0.
x
What should be the value of f(0) so that f is continuous at 0.

1
Short answer: f(0) have to be 0. Indeed, for z € R*, —x < xsin(;) <z so f(x) 0.

s
z#0,2—0

For a,b € R,a < b, let f : [a,b] — R be such thatﬂ Va,y € [a,b],|f(z) — f(y)] < L x |z —y|, for some
L > 0. Show that f is continuous on [a, b].

Answer: If L =0, then f is constant so obviously continuous.
Assume L > 0. Let ¢ € [a,b] and & > 0. We choose 6(g) = % > 0. For y € [a,b], if |xg — y| < 6(e), then

|f(y) — f(zo)| < Llzg — y| < Lé(e) = L% = €. So by definition, f is continuous at xg. And xg was any

xo € [a,b], so f is continuous on all [a, b].

Let f : Z — R be well-defined. Show that f is continuous everywhere on Z.

Quick answer: We just use the “c,d(g)” definition, because if §(¢) < 1,z,y € Z, then (Jz — y| <
i) = z=y).

1
So, for one xy € Z, let take £ > 0. If we choose d(¢) = = > 0, then we observe that we have, for every

YEZ, |lrg—y| <d(e) = xo=y = |f(xo) — f(y)| =0 <e. So f is continuous at this x.
Bonus exercises.

1
Let f: R —> R,z sin (> if © # 0. Can we choose f(0) such that f is continuous at 0?7 What about
x

limit?

Answer: The answer is no.
1

dvy = =
nav 37/2 + 2nw

Let prove it, by defining u,, = for n € N. This define two sequences u

m/2 + 2nm &
and v. Observe that u, > 0,v, > 0 for every n.
For n e N, f(u,) = sin(n/2 + 2nw) = sin(n/2) = 1, and f(v,) = sin(37/2 + 2n7) = sin(37/2) = —1. But

u, — 0,andv, — 0.
n—-+00 n—+00

So if we were able to give a value to f(0) for f to be continuous at 0, then we would have both
1= nl_lffoof(“”) = f(nl_lffoo tn) = f(0) and —1 = nl_lffoof(“”) = f(nl_lgloo vp) = f(0). That is absurd, as
f(0) cannot be 1 and —1.

Conclusion, we cannot choose a value for f(0) to f to be continuous at 0.

4f is said to be L-LIPSCHITZ, or LIPSCHITZ continuous of ratio L on [a,b].
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Ex.3.2)

Ex.3.3)

Ex.3.4)

Ex.3.5)

0 n
x
For z € R, show that the series Z — Is convergent (this shows that e is well-defined for all z € R).
n!
n=0
Next, show that there exists A > 0 such that e® < 1+ Az for all z € [0, 1]. Finally, show that exp : z — e
is continuous at 0, and subsequently everywhere in R.

n
. o . . def T Gp41
Answer: By ratio test, it is obvious, because if a, = - then a, # 0 for any n € N, and ot =
n! Ganp
x ..
— — 0 < 1. So that series is convergent for any x € R.
n n—+w0

We know that exp : x — e is strictly convex on [0,1], so a good A can be such that 4+ Ax1=
e’ +el, ie. A= el = e Indeed, thanks to convexity, we know that “the curve is always below a
string”. The equation of the curve is y = e, the equation of the string (from = 0 to = 1) is
exp(1) — exp(0)
1-0
Therefore, with A = exp(1) = e, we have |e* — 1| < Az for all z € [0,1]. Let ¢ > 0. Now choose

5(e) & ; > 0, then if |z — 0] = |z| = 2 < §(¢), then |e” —e°| = [e® — 1| < Az < \(e) = )\i =¢e. So by

y =exp(0) + r=14+exuz.

definition of being continous at xy = 0, exp :  — e is continuous at 0.

Let o € R. For h # 0, we have exp(zg + h) = e®oth — ¢%0 » o" Thanks to continuity at 0, proved

previously, we know that e® et 1, we have exp(zo + h) o e x 1 = e" = exp(zp). So exp is continuous

in zg. Hence, exp is continuous on R.

Use the fact that exp :  — €® is continuous to show that In : z — Inz is continuous in its domain.

Answer: We know that the reciprocal of a continuous function is continuous on the correct domain.
We could prove it, but hey work by yourself from time to time.

Let f: [0,1] — R be continuous on [0,1]. Assume that Vz € [0,1],0 < f(z) < 1. Show that there exists
c € [0,1] such that f(c) = c.

Answer: Letg:[0,1] > R,z — f(z)—x. g is continuous on [0, 1] because f is. And ¢g(0) = f(0)—0 =
f(0) = 0 and g(1) = f(1) =1 < 0.
If g(0) = 0, then ¢; < 0 is good to have f(c1) = ¢1.

def

If g(1) = 0, then here co = 1 is also good to have f(c2) = ca.

Now assume that ¢(0) # 0, and g(1) # 1. So g(0) > 0 and g(1) < 0 (by the hypothesis on 0 < f(z) < 1).
By using BOLzANO’s theorem to g on [0,1], we conclude that there is ¢35 € (0,1) such that g(cz) = 0
ie. f(c3) = cs.

Hence, in every case, we have one ¢ € [0,1] such that f(c) = ¢, which is what we wanted. Victory!

Is it possible to have a function f : R — R, well-defined everywhere, but continuous nowhere?
Remember that Q is the set of rationals numbers, dense in R.

Show that 1gp (R — R,z — 1 if x € Q, 0 otherwise) is continuous nowhere, by using a sequence (7, )nen €
QN,rnn Lo for a a € R\Q, to show that 1g is not continuous at «, (and conversely (8y)nen €

—+

(R\Q)N, Bn =4 for a g € Q, for non-continuity at q).
n—+0o0

Quick answer: First of all, for ¢ € Q,« € R\Q, we can justify the existence of these two sequences r
and (3 thanks to density of Q in R (and R\Q in R).

By using all these notations, if f is continuous at ¢, then f(5,) = f(q), but Vn e N, f(8,) = 0 because
n——+0ao0
Bn ¢ Q,and f(qg) =1. As 0 # 1, f cannot be continuous at g. The same stands for continuity at «.
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