1 Exercises to do before tutorials.

Ex.1.1) Show that sum $(f+g)$ of two functions (f, g) which are individually continuous at a point $\left(x_{0}\right)$ is continuous at that point.

Answer: Let $\varepsilon>0$.

- f is continuous at x_{0}, so we have a $\delta_{f, \varepsilon}>0$ such that $\forall x \in D_{f},\left|x-x_{0}\right|<\delta_{f, \varepsilon} \Longrightarrow\left|f(x)-f\left(x_{0}\right)\right|<\frac{\varepsilon}{2}$.
- g is continuous at x_{0}, so we have a $\delta_{g, \varepsilon}>0$ such that $\forall x \in D_{g},\left|x-x_{0}\right|<\delta_{g, \varepsilon} \Longrightarrow\left|g(x)-g\left(x_{0}\right)\right|<\frac{\varepsilon}{2}$.

Let now define $\delta \stackrel{\text { def }}{=} \min \left(\delta_{f, \varepsilon}, \delta_{g, \varepsilon}\right)>0$. If $x \in D_{f} \cap D_{g}=D_{f+g}$, and if $\left|x-x_{0}\right|<\delta$, then we have both $\left|x-x_{0}\right|<\delta_{f, \varepsilon}$ and $\left|x-x_{0}\right|<\delta_{g, \varepsilon}$, so we have $\left|(f+g)(x)-(f+g)\left(x_{0}\right)\right| \leqslant\left|f(x)-f\left(x_{0}\right)\right|+\left|g(x)-g\left(x_{0}\right)\right| \leqslant$ $\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$. Therefore, $(f+g)$ is continuous at x_{0}.
Ex.1.2) Compute the following left-hand side limits, right-hand side limits, and limits (if they exist):
(a) $\lim _{x \rightarrow 0^{-}} \frac{|x|}{x}=-1, \lim _{x \rightarrow 0^{+}} \frac{|x|}{x}=+1$, so no limit at 0 .
(b) Exactly the same, as $\sqrt{x^{2}}=|x|$. Hence, $\lim _{x \rightarrow 0^{-}} \frac{\sqrt{x^{2}}}{x}=-1, \lim _{x \rightarrow 0^{+}} \frac{\sqrt{x^{2}}}{x}=+1$, so no limit at 0 .
(c) $\lim _{x \rightarrow 1^{-}} \frac{2 x^{2}-3 x+1}{x-1}=\lim _{x \rightarrow 1^{+}} \frac{2 x^{2}-3 x+1}{x-1}=\lim _{x \rightarrow 1} \frac{2 x^{2}-3 x+1}{x-1}=1$.
(d) $\lim _{\substack{x \rightarrow 0^{-} \\ 2 t+h \rightarrow 2 t .}} \frac{(t+h)^{2}-t^{2}}{h}=\lim _{x \rightarrow 0^{+}} \frac{(t+h)^{2}-t^{2}}{h}=\lim _{x \rightarrow 0} \frac{(t+h)^{2}-t^{2}}{h}=2 t$, because $\frac{(t+h)^{2}-t^{2}}{h}=\frac{2 t h+h^{2}}{h}=$ $2 t+h \underset{h \rightarrow 0}{\rightarrow} 2 t$.
(e) $\lim _{x \rightarrow a^{-}} \frac{\sin x-\sin a}{x-a}=\lim _{x \rightarrow a^{+}} \frac{\sin x-\sin a}{x-a}=\lim _{x \rightarrow a} \frac{\sin x-\sin a}{x-a}=1$,
(f) $\sin (\theta) \underset{\theta \rightarrow 0}{\simeq} \theta$, so $\lim _{x \rightarrow 0} \frac{\sin 5 x}{\sin x}=5$.

Ex.1.3) Use the fact ${ }^{1}$ that $|\sin (x)|<|x|$, true for all $0<|x|<\frac{\pi}{2}$ to show that sin is continuous at 0 . Next, use the identity $\cos (2 x)=1-2 \sin ^{2}(x)(\forall x \in \mathbb{R})$ to show that \cos is also continuous at 0 . Finally, use the standard formula for $\sin (x+h)$ and $\cos (x+h)$ to show that \sin and \cos are continuous everywhere on \mathbb{R}.

Answer: We have $\sin (0)=0$. Let $\varepsilon>0$, and define $\delta=\varepsilon$. If $0<|x-0|<\delta$, then $|\sin (x)-\sin (0)|=$ $|\sin (x)|<|x|<\varepsilon$. So, by definition, \sin is continuous at 0 .
Let call $f: y \mapsto 1-2 y^{2} . f$ is a polynomial function, so it is of course continuous everywhere. Thanks to the composition property, $f \circ \sin$ is still continuous on 0 . But the given identity say $\cos (x)=(f \circ \sin)\left(\frac{x}{2}\right)$, and $g: x \mapsto \frac{x}{2}$ is also continuous at 0 . So $\cos =(f \circ \sin) \circ g=f \circ \sin \circ g$ is continuous at 0 .
For $x, h \in \mathbb{R}$, we have $\sin (x+h)=\sin (x) \cos (h)+\cos (x) \sin (h)$. So if $h \rightarrow 0, \sin (x+h) \rightarrow \sin (x) \cos (0)+$ $\cos (x) \sin (0)$, but $\cos (0)=1, \sin (0)=0$, so $\sin (x+h) \rightarrow \sin (x)$, which is saying that \sin is continuous at that point x.
And similarly, for $x, h \in \mathbb{R}$, we have $\cos (x+h)=\cos (x) \cos (h)-\sin (x) \sin (h)$. So if $h \rightarrow 0, \cos (x+h) \rightarrow$ $\cos (x) \cos (0)-\sin (x) \sin (0)$, so $\cos (x+h) \rightarrow \cos (x)$, which is saying that \cos is continuous at that point x.

Ex.1.4) Let f be a real polynomial function of degree $n>0$ such that the last and first coefficients have opposite signs. Prove ${ }^{2}$ that there exists a positive $x\left(\right.$ i.e. $\left.\quad x \in \mathbb{R}_{+}^{*}\right)$ such that $f(x)=0$.

[^0]Answer: Let start by naming these coefficients: for $x \in \mathbb{R}, f(x)$ can be written as $a_{0}+a_{1} x+\cdots+$ $a_{n-1} x^{n-1}+a_{n} x^{n}=\sum_{k=0}^{n} a_{k} x^{k}$, with $a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{R}$ being the (real) coefficients of this polynomial function, and $a_{n} \neq 0$ (because f is of degree exactly n).
The hypothesis is $a_{0} a_{n}<0$ (they have a different sign). If $f(0)=a_{0}=0$, then $x=0$ is already good to have $f(x)=0$.
Assume now that $a_{0} \neq 0$. If $a_{n}<0$, we have $f(x) \underset{x \rightarrow+\infty}{\rightarrow}-\infty$, and if $a_{n}>0$, we have $f(x) \underset{x \rightarrow+\infty}{ }+\infty$.

- First case is if $a_{0}<0$. Then by the hypothesis of a_{0} and a_{n} being of different signs, we have $a_{n}>0$. So $f(x) \underset{x \rightarrow+\infty}{ }+\infty$. That is, we can find a $A>0$ such that $f(A)>1$ (direct application of the definition of $\underset{x \rightarrow+\infty}{\rightarrow}+\infty$). Then we can we Bolzano's theorem in $[0, A]$, because $f(0)<0, f(A)>0$. There we have a $x_{1} \in(0, A)$ such that $f\left(x_{1}\right)=0$.
- The other case is if $a_{0}>0$, and we do the same. We have $a_{n}>0$. So $f(x) \underset{x \rightarrow+\infty}{\rightarrow}-\infty$. That is, we can find a $B>0$ such that $f(B)<-1$ (direct application of the definition of $\underset{x \rightarrow+\infty}{\rightarrow \infty}+\infty$). Then we can we Bolzano's theorem in $[0, B]$, because $f(0)>0, f(B)<0$. There we have a $x_{2} \in(0, B)$ such that $f\left(x_{2}\right)=0$.

In both cases, we have at least on $x \geqslant 0$ such that $f(x)=0$.

2 Exercises to do during or after tutorials.

Ex.2.1) Let f and g be given below and let $h=f \circ g$. In each case, determine the domains of f, g, and h and given direct formula for h. Finally, investigate the continuity of h :
(i) $f(x)=x^{2}-2 x, g(x)=x+1$,
(iii) $f(x)=\sqrt{x}, g(x)=x+\sqrt{x}$,
(ii) $f(x)=\sqrt{x}, g(x)=x^{2}$,
(iv) $f(x)=\sqrt{x}, g(x)=\sin (x)$.

Answer:

(i) f and g are both defined and continuous on \mathbb{R}. So h is also continuous on \mathbb{R}. For $x \in \mathbb{R}, h(x)=$ $(f \circ g)(x)=f(x+1)=(x+1)^{2}-2(x+1)=x^{2}+2 x+1-2 x-2=x^{2}-1$.
(ii) $D_{f}=\mathbb{R}_{+}$, and $D_{g}=\mathbb{R}$, on which f and g are continuous. But $g(x) \geqslant 0$ for all x, so $h=f \circ g$ is well defined for all $x \in \mathbb{R}$. Hence h is also continuous on \mathbb{R}. For $x \in \mathbb{R}, h(x)=(f \circ g)(x)=f\left(x^{2}\right)=$ $\sqrt{x^{2}}=|x|$.
(iii) $D_{f}=D_{g}=\mathbb{R}_{+}$because of the \sqrt{x} in their expression, and f and g are continuous on their domains. But $g(x) \geqslant 0$ for all $x \geqslant 0$, so $h=f \circ g$ is well defined for all $x \in \mathbb{R}_{+}$. Hence h is also continuous on \mathbb{R}_{+}. For $x \in \mathbb{R}_{+}, h(x)=(f \circ g)(x)=f(x+\sqrt{x})=\sqrt{x+\sqrt{x}}$.
(iv) $D_{f}=\mathbb{R}_{+}$, and $D_{g}=\mathbb{R}$, on which f and g are continuous. But $g(x) \geqslant 0 \leqslant>x \in[0, \pi]+2 \pi \mathbb{Z}$, so $h=f \circ g$ is well defined on $[0, \pi]+2 \pi \mathbb{Z}$, and it is obviously continuous on this domain. For $x \in[0, \pi]+2 \pi \mathbb{Z}, h(x)=(f \circ g)(x)=f(\sin (x))=\sqrt{\sin (x)}$.
Ex.2.2) If n is an odd positive integer $(n \in 2 \mathbb{N}+1)$ and $a<0$ prove that there is exactly one negative $b<0$ such that $b^{n}=a$. And what happens if n is even?

Quick answer: If $n \in 2 \mathbb{N}+1$, write n as $2 k+1$, with $k \in \mathbb{N}$. Let $x \stackrel{\text { def }}{=} \sqrt[n]{|a|}$, and $b \stackrel{\text { def }}{=}-x$, then $b^{n}=(-1)^{n} x^{n}=(-1)^{2 k+1} a=-a$. So that wass for existence. And for uniqueness, it comes $\}^{3}$ from the fact that $t \mapsto t^{n}$ is strictly increasing in that case (where n is odd).
If n is even, there is no possible solution, as $n=2 k$ gives $b^{n}=\left(b^{k}\right)^{2}>0$ if $b \neq 0$.

[^1]Ex.2.3) Let $f=\tan$ (on a certain domain you should precise). Although $f(\pi / 4)=1$ and $f(3 \pi / 4)=-1$, there is no x in $[\pi / 4,3 \pi / 4]$ such that $f(x)=0$.
Why does this not contradict the intermediate value theorem?

Answer: \tan is not continuous on $[\pi / 4,3 \pi / 4]$ because it is not defined on $[\pi / 2]: \lim _{x \rightarrow \pi / 2^{-}} \tan (x)=+\infty$, but $\lim _{x \rightarrow \pi / 2^{+}} \tan (x)=-\infty$. And the intermediate value theorem is only for continuous function on an interval $[a, b]$.
Ex.2.4) Let $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto x \sin \left(\frac{1}{x}\right)$ if $x \neq 0$.
What should be the value of $f(0)$ so that f is continuous at 0 .
Short answer: $f(0)$ have to be 0 . Indeed, for $x \in \mathbb{R}^{*},-x \leqslant x \sin \left(\frac{1}{x}\right) \leqslant x$ so $f(x) \underset{x \neq 0, x \rightarrow 0}{\rightarrow} 0$.
Ex.2.5) For $a, b \in \mathbb{R}, a<b$, let $f:[a, b] \rightarrow \mathbb{R}$ be such that ${ }^{4} \forall x, y \in[a, b],|f(x)-f(y)| \leqslant L \times|x-y|$, for some $L \geqslant 0$. Show that f is continuous on $[a, b]$.

Answer: If $L=0$, then f is constant so obviously continuous.
Assume $L>0$. Let $x_{0} \in[a, b]$ and $\varepsilon>0$. We choose $\delta(\varepsilon)=\frac{\varepsilon}{L}>0$. For $y \in[a, b]$, if $\left|x_{0}-y\right|<\delta(\varepsilon)$, then $\left|f(y)-f\left(x_{0}\right)\right| \leqslant L\left|x_{0}-y\right| \leqslant L \delta(\varepsilon)=L \frac{\varepsilon}{L}=\varepsilon$. So by definition, f is continuous at x_{0}. And x_{0} was any $x_{0} \in[a, b]$, so f is continuous on all $[a, b]$.
Ex.2.6) Let $f: \mathbb{Z} \rightarrow \mathbb{R}$ be well-defined. Show that f is continuous everywhere on \mathbb{Z}.

Quick answer: We just use the " $\varepsilon, \delta(\varepsilon)$ " definition, because if $\delta(\varepsilon)<1, x, y \in \mathbb{Z}$, then $(|x-y|<$ $\delta(\varepsilon) \Longrightarrow x=y)$.
So, for one $x_{0} \in \mathbb{Z}$, let take $\varepsilon>0$. If we choose $\delta(\varepsilon)=\frac{1}{2}>0$, then we observe that we have, for every $y \in \mathbb{Z},\left|x_{0}-y\right|<\delta(\varepsilon) \Longrightarrow x_{0}=y \Longrightarrow\left|f\left(x_{0}\right)-f(y)\right|=0<\varepsilon$. So f is continuous at this x_{0}.

3 Bonus exercises.

Ex.3.1) Let $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto \sin \left(\frac{1}{x}\right)$ if $x \neq 0$. Can we choose $f(0)$ such that f is continuous at 0 ? What about limit?

Answer: The answer is no.
Let prove it, by defining $u_{n}=\frac{1}{\pi / 2+2 n \pi}$ and $v_{n}=\frac{1}{3 \pi / 2+2 n \pi}$ for $n \in \mathbb{N}$. This define two sequences u and v. Observe that $u_{n}>0, v_{n}>0$ for every n.
For $n \in \mathbb{N}, f\left(u_{n}\right)=\sin (\pi / 2+2 n \pi)=\sin (\pi / 2)=1$, and $f\left(v_{n}\right)=\sin (3 \pi / 2+2 n \pi)=\sin (3 \pi / 2)=-1$. But $u_{n} \underset{n \rightarrow+\infty}{ } 0$, and $v_{n} \underset{n \rightarrow+\infty}{ } 0$.
So if we were able to give a value to $f(0)$ for f to be continuous at 0 , then we would have both $1=\lim _{n \rightarrow+\infty} f\left(u_{n}\right)=f\left(\lim _{n \rightarrow+\infty} u_{n}\right)=f(0)$ and $-1=\lim _{n \rightarrow+\infty} f\left(v_{n}\right)=f\left(\lim _{n \rightarrow+\infty} v_{n}\right)=f(0)$. That is absurd, as $f(0)$ cannot be 1 and -1 .
Conclusion, we cannot choose a value for $f(0)$ to f to be continuous at 0 .

[^2]Ex.3.2) For $x \in \mathbb{R}$, show that the series $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ is convergent (this shows that e^{x} is well-defined for all $x \in \mathbb{R}$). Next, show that there exists $\lambda>0$ such that $\mathrm{e}^{x} \leqslant 1+\lambda x$ for all $x \in[0,1]$. Finally, show that exp : $x \mapsto \mathrm{e}^{x}$ is continuous at 0 , and subsequently everywhere in \mathbb{R}.

Answer: By ratio test, it is obvious, because if $a_{n} \stackrel{\text { def }}{=} \frac{x^{n}}{n!}$, then $a_{n} \neq 0$ for any $n \in \mathbb{N}$, and $\frac{a_{n+1}}{a_{n}}=$ $\frac{x}{n} \underset{n \rightarrow+\infty}{\rightarrow} 0<1$. So that series is convergent for any $x \in \mathbb{R}$.
We know that $\exp : x \mapsto \mathrm{e}^{x}$ is strictly convex on $[0,1]$, so a good λ can be such that $\mathrm{e}^{0}+\lambda \times 1=$ $\mathrm{e}^{0}+\mathrm{e}^{1}$, i.e. $\lambda=\mathrm{e}^{1}=\mathrm{e}$. Indeed, thanks to convexity, we know that "the curve is always below a string". The equation of the curve is $y=\mathrm{e}^{x}$, the equation of the string (from $x=0$ to $x=1$) is $y=\exp (0)+\frac{\exp (1)-\exp (0)}{1-0} x=1+\mathrm{e} \times x$.
Therefore, with $\lambda \stackrel{\text { def }}{=} \exp (1)=\mathrm{e}$, we have $\left|\mathrm{e}^{x}-1\right| \leqslant \lambda x$ for all $x \in[0,1]$. Let $\varepsilon>0$. Now choose $\delta(\varepsilon) \stackrel{\text { def }}{=} \frac{\varepsilon}{\lambda}>0$, then if $|x-0|=|x|=x<\delta(\varepsilon)$, then $\left|\mathrm{e}^{x}-\mathrm{e}^{0}\right|=\left|\mathrm{e}^{x}-1\right| \leqslant \lambda x<\lambda \delta(\varepsilon)=\lambda \frac{\varepsilon}{\lambda}=\varepsilon$. So by definition of being continous at $x_{0}=0, \exp : x \mapsto \mathrm{e}^{x}$ is continuous at 0 .
Let $x_{0} \in \mathbb{R}$. For $h \neq 0$, we have $\exp \left(x_{0}+h\right)=\mathrm{e}^{x_{0}+h}=\mathrm{e}^{x_{0}} \times \mathrm{e}^{h}$. Thanks to continuity at 0 , proved previously, we know that $\mathrm{e}^{h} \underset{h \rightarrow 0}{\rightarrow} 1$, we have $\exp \left(x_{0}+h\right) \underset{h \rightarrow 0}{\rightarrow} \mathrm{e}^{x_{0}} \times 1=\mathrm{e}^{x_{0}}=\exp \left(x_{0}\right)$. So exp is continuous in x_{0}. Hence, \exp is continuous on \mathbb{R}.
Ex.3.3) Use the fact that exp : $x \mapsto \mathrm{e}^{x}$ is continuous to show that $\ln : x \mapsto \ln x$ is continuous in its domain.

Answer: We know that the reciprocal of a continuous function is continuous on the correct domain. We could prove it, but hey work by yourself from time to time.

Ex.3.4) Let $f:[0,1] \rightarrow \mathbb{R}$ be continuous on $[0,1]$. Assume that $\forall x \in[0,1], 0 \leqslant f(x) \leqslant 1$. Show that there exists $c \in[0,1]$ such that $f(c)=c$.

Answer: Let $g:[0,1] \rightarrow \mathbb{R}, x \mapsto f(x)-x . g$ is continuous on $[0,1]$ because f is. And $g(0)=f(0)-0=$ $f(0) \geqslant 0$ and $g(1)=f(1)-1 \leqslant 0$.
If $g(0)=0$, then $c_{1} \stackrel{\text { def }}{=} 0$ is good to have $f\left(c_{1}\right)=c_{1}$.
If $g(1)=0$, then here $c_{2} \stackrel{\text { def }}{=} 1$ is also good to have $f\left(c_{2}\right)=c_{2}$.
Now assume that $g(0) \neq 0$, and $g(1) \neq 1$. So $g(0)>0$ and $g(1)<0$ (by the hypothesis on $0 \leqslant f(x) \leqslant 1$). By using Bolzano's theorem to g on $[0,1]$, we conclude that there is $c_{3} \in(0,1)$ such that $g\left(c_{3}\right)=0$ i.e. $f\left(c_{3}\right)=c_{3}$.

Hence, in every case, we have one $c \in[0,1]$ such that $f(c)=c$, which is what we wanted. Victory!
Ex.3.5) Is it possible to have a function $f: \mathbb{R} \rightarrow \mathbb{R}$, well-defined everywhere, but continuous nowhere? Remember that \mathbb{Q} is the set of rationals numbers, dense in \mathbb{R}.
Show that $\mathbb{1}_{\mathbb{Q}}\left(\mathbb{R} \rightarrow \mathbb{R}, x \mapsto 1\right.$ if $x \in \mathbb{Q}, 0$ otherwise) is continuous nowhere, by using a sequence $\left(r_{n}\right)_{n \in \mathbb{N}} \in$ $\mathbb{Q}^{\mathbb{N}}, r_{n} \underset{n \rightarrow+\infty}{\rightarrow} \alpha$ for a $\alpha \in \mathbb{R} \backslash \mathbb{Q}$, to show that $\mathbb{1}_{\mathbb{Q}}$ is not continuous at α, (and conversely $\left(\beta_{n}\right)_{n \in \mathbb{N}} \in$ $(\mathbb{R} \backslash \mathbb{Q})^{\mathbb{N}}, \beta_{n} \underset{n \rightarrow+\infty}{\rightarrow} q$ for a $q \in \mathbb{Q}$, for non-continuity at q).

Quick answer: First of all, for $q \in \mathbb{Q}, \alpha \in \mathbb{R} \backslash \mathbb{Q}$, we can justify the existence of these two sequences r and β thanks to density of \mathbb{Q} in $\mathbb{R}($ and $\mathbb{R} \backslash \mathbb{Q}$ in $\mathbb{R})$.
By using all these notations, if f is continuous at q, then $f\left(\beta_{n}\right) \underset{n \rightarrow+\infty}{\rightarrow} f(q)$, but $\forall n \in \mathbb{N}, f\left(\beta_{n}\right)=0$ because $\beta_{n} \notin \mathbb{Q}$, and $f(q)=1$. As $0 \neq 1, f$ cannot be continuous at q. The same stands for continuity at α.

[^0]: ${ }^{1}$ You can also try to prove that fact.
 ${ }^{2}$ You should start by naming all these coefficients $a_{0}, \ldots, a_{n} \in \mathbb{R}$, and use contradiction ("if f has no zero in \mathbb{R}_{+}^{*}, then \ldots ")

[^1]: ${ }^{3}$ We should justify this step more precisely, if possible. Do it yourself to practice.

[^2]: ${ }^{4} f$ is said to be L-LIPSCHITZ, or LIPSCHITZ continuous of ratio L on $[a, b]$.

