1 Exercises to do before tutorials.

2 Exercises to do during or after tutorials.

3 Bonus exercises.

1. Express, with quantifiers, these statements:
(1) the sequence u (i.e. $\left.\left(u_{n}\right)_{n \in \mathbb{N}}\right)$ does not converge to $l \in \mathbb{R}$,
(2) the sequence u does not diverge to $+\infty$,
(3) the sequence u diverges.
2. Show that the sequence $(\sqrt{n})_{n \in \mathbb{N}}$ diverge to $+\infty$.
3. Find a divergent sequence but which does not tend to $\pm \infty$; and then a non-bounded sequence, non-negative, which does not tend to $+\infty$.
4. Study the next sequences (are they well defined? First terms, eventual limit, asymptotic behavior etc):
(1) $u_{n} \xlongequal{\text { def }} \frac{n^{2}+3 n-4}{4 n^{2}+5}$,
(3) $u_{n} \stackrel{\text { def }}{=} \frac{n^{4}+7 n}{5 n^{4}+\cos \left(n^{2}\right)-\frac{1}{n}}$,
(2) $u_{n} \stackrel{\text { def }}{=} \frac{\sin \left(n^{2}\right)}{n}$,
(4) $u_{n} \stackrel{\text { def }}{=} \frac{a^{n}-b^{n}}{a^{n}+b^{n}}$, with $a, b \in \mathbb{R}_{+}^{*}$,
5. Is a product of two lower-bounded sequences still lower-bounded?
6. Show that a non-decreasing sequence (from a certain rank) is lower-bounded.
7. Let u be a bounded sequence and v a sequence with limit being $+\infty$. Show that $u+v$ also has $+\infty$ for limit.
8. Let u be a convergent sequence and v divergent sequence. Show that $u+v$ diverges. What can you say about the product sequence $\left((u . v)_{n} \stackrel{\text { def }}{=} u_{n} . v_{n}, \forall n \in \mathbb{N}\right.$, noted $\left.u v\right)$?
9. Let u and v be two sequences, respectively converging to l et l^{\prime}. We consider the two sequences $w i$ and $w s$ defined by: $\forall n \in \mathbb{N}, w i_{n} \stackrel{\text { def }}{=} \min \left\{u_{n}, v_{n}\right\}, w s_{n} \stackrel{\text { def }}{=} \max \left\{u_{n}, v_{n}\right\}$. Show that both sequences $w i$ and $w s$ are converging, then compute their limits.
10. Let u be a real sequence, which all terms are relative integers (i.e. $u \in \mathbb{Z}^{\mathbb{N}}$). Prove that u converges if and only $\left.i f \square^{1}\right]$ is constant from a certain rank $n_{0} \geqslant 0$ (i.e. $\exists n_{0} / \forall n \geqslant n_{0}, u_{n}=u_{n_{0}}$).

[^0]11. Prove ${ }^{2}$ the convergence for these sequences, given by their general term ${ }^{3} u_{n} \stackrel{\text { def }}{=}$ $\sum_{k=1}^{n} \frac{1}{k 2^{k}}$, et $v_{n} \stackrel{\text { def }}{=} \sum_{k=1}^{n} \frac{1}{k^{2}}$.
12. Let u be a bounded sequence, verifying: $\forall n \in \mathbb{N}^{*}, 2 u_{n} \leqslant u_{n-1}+u_{n+1}$. Then we define $v=\left(v_{n}\right)_{n \in \mathbb{N}}$ with $\forall n \in \mathbb{N}, v_{n} \stackrel{\text { def }}{=} u_{n+1}-u_{n}$. Show ${ }^{4}$ that v converges, and compute its limit.
13. We define u, and v with their first term $u_{0}>0$ et $v_{0}>0$, and the recurrence relation:
$$
\forall n \in N, u_{n+1}=\sqrt{u_{n} v_{n}} \text { and } v_{n+1}=\frac{u_{n}+v_{n}}{2}
$$

Show ${ }^{5}$ that these sequences converge, and show that they have the same limit (which therefore depends only on u_{0}, v_{0}). Can you give the nam ${ }_{6}^{6}$ of this limit?
14. Consider $u \in \mathbb{R}^{\mathbb{N}}$ a real sequence (i.e. a sequence with values being reals), and assume that the three sequences $\left(u_{2 n+1}\right)_{n \in \mathbb{N}},\left(u_{2 n}\right)_{n \in \mathbb{N}},\left(u_{3 n}\right)_{n \in \mathbb{N}}$ are all converging. Then show that u converges (to the same limit, obviously).
15. Let u be a non-decreasing real sequence. If we assume that u has one extracted sub-sequence which converges, then conclude that u also converges.
16. For a real sequence u, we define v as the arithmetic means of the first terms of u : $\forall n \in \mathbb{N}^{*}, v_{n} \stackrel{\text { def }}{=} \frac{1}{n} \sum_{k=1}^{n} u_{k}$.
(1) We want to prove the Cesìro's theorem: "if u converges, then v converges too, and has the same limit". You can try to prove it directly, or you can follow this proof scheme:
(i) Show that we can strengthen the hypothesis and only show the theorem when u converges to 0 .
(ii) Now, we can assume that u converges to 0 . Take $\varepsilon>0$ (fixed). According the definition of the convergence, we have a rank N from which $\left|u_{n}\right| \leqslant \varepsilon$ (i.e. $\forall n \geqslant N$). Split the big sum in two parts, one with indexes before N and one after, then conclude (as the first part tends to 0 , for $n \longleftrightarrow+\infty$).
(2) What about the other implication ${ }^{77}$? And if you assume u non-decreasing?

[^1]17. If we have $u \in \mathbb{R}^{\mathbb{N}}$, and $l \in \mathbb{R}$, such that: $\lim _{n \longleftrightarrow+\infty}\left(u_{n+1}-u_{n}\right)=l$. Show ${ }^{8}$ that: $\lim _{n \longleftrightarrow+\infty} \frac{u_{n}}{n}=l$.
18. Study $\sqrt{9} u$, given by its general term $u_{n} \stackrel{\text { def }}{=} \sum_{k=0}^{n} \frac{(-1)^{k}}{k!}$.
19. Find a simple equivalent (for $n \longleftrightarrow+\infty$) of these sequences:
(1) $u_{n}=\ln \sqrt{\frac{n+1}{n-1}}$,
(5) $u_{n}=\frac{\ln n+n!}{n^{2}+(n+1)!}$,
(2) $u_{n}=\sqrt{n+1}-\sqrt{n}$,
(3) $u_{n}=\frac{\mathrm{e}^{n}+n!}{n+1}$,
(6) $u_{n}=\quad \sqrt{n+\sqrt{n^{2}+1}}-$
$\sqrt{n+\sqrt{n^{2}-1}}$.
(4) $u_{n}=\frac{\mathrm{e}^{n}+\mathrm{e}^{-n}+n}{\sqrt{n^{2}+n}-n}$,
(7) $u_{n}=\mathrm{e}^{n^{2}+n!+\frac{1}{n}}$,
20. If you admit this lemma ${ }^{10}$, "if u converges to $l \in \mathbb{R}$, then $\mathrm{e}^{u} \stackrel{\text { def }}{=}\left(\mathrm{e}^{u_{n}}\right)_{n \in \mathbb{N}}$ converges to $\mathrm{e}^{l "}$, study these real sequences:
(1) $u_{n}=\left(1+\frac{1}{n}\right)^{n}$,
(2) $u_{n}=\left(1-\frac{1}{n}\right)^{n}$,
(3) $u_{n}=\left(\cos \left(\frac{1}{n}\right)\right)^{n^{4} \sin \left(\frac{1}{n^{2}}\right)}$.
21. Find an equivalent (for $n \longleftrightarrow+\infty$, as always when dealing with sequences) to every one of these sequences u, and precise their (asymptotic) behavior:
(1) $u_{n}=\sin (\tan (\ln (n+1)-\ln (n)))$,
(2) $u_{n}=\frac{\sqrt{\cos \left(\frac{1}{n}\right)}-1}{\ln (n+1)-\ln (n)}$,
(3) $u_{n}=\frac{\mathrm{e}^{\sin \left(\frac{1}{n^{2}}\right)}-1}{1-\cos \left(\mathrm{e}^{-n}\right)} \ln \left(\cos \left(\frac{1}{n}\right)\right)$.
22. Let u be a real sequence, defined by $u_{0} \in \mathbb{R}_{+}^{*}$, and $\forall n \in \mathbb{N}, u_{n+1}=u_{n}{ }^{2}+u_{n}$.
(1) Show that u diverges to $+\infty$,

[^2](2) If v is defined with $\forall n \in N, v_{n} \stackrel{\text { def }}{=} \frac{1}{2^{n}} \ln \left(u_{n}\right)$, prove that v is non-decreasing.
(3) Find an upper-bound, for any $n \in \mathbb{N}$, of $v_{n+1}-v_{n}$. Then use it to prove that v is upper-bounded, and conclude to its convergence. v 's limit will be referred as α,
(4) Prove $\forall n, p \in \mathbb{N}^{2}, 0 \leqslant v_{n+p+1}-v_{n} \leqslant \frac{1}{2^{n}} \ln \left(1+\frac{1}{u_{n}}\right)$,
(5) Conclude that we have: $u_{n} \underset{n \longleftrightarrow+\infty}{\sim} \mathrm{e}^{2^{n} \alpha}$.

[^0]: ${ }^{1}$ If and only if will be abbreviated iff .

[^1]: ${ }^{2}$ For the second one, the formula $\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$, true for any $n \in \mathbb{N}$ might help.
 ${ }^{3}$ When dealing with sequences, it is common to forget to precise here that $n \in \mathbb{N}$.
 ${ }^{4}$ One could prove that v is monotone and bounded, then reason by contradiction to prove that its limit is zero.
 ${ }^{5}$ One could try to prove, that from a certain rank, one of the sequences is non-decreasing, the other is non-increasing, and one is always greater than the other...
 ${ }^{6}$ It is usually called the arithmetico-geometric mean of u_{0} and v_{0}.
 ${ }^{7}$ i.e. if v converges, then u converges too.

[^2]: ${ }^{8}$ One could maybe use the Cesàro's theorem.
 ${ }^{9}$ One could focus separately on the two sequences $\left(u_{2 n}\right)_{n \in \mathbb{N}}$ and $\left(u_{2 n+1}\right)_{n \in \mathbb{N}}$.
 ${ }^{10}$ Which is a direct consequence of the exponential being continous, and the general definition of continuity in a metric space (you might learn this later).

