Real sequences and series : Ex.1.7 (Babylonian method)

Let $u_{0}=1$ and define, for $n \in \mathbb{N}, u_{n+1}=\frac{u_{n}+\frac{2}{u_{n}}}{2}$.
(i) Show that the sequence $u=\left(u_{n}\right)_{n \in \mathbb{N}}$ is well defined.
(ii) Compute the first 6 terms (by using your calculator or smartphone). What do you think the limit will be?
(iii) Show that u is converging ${ }^{11}$, and compute its limit.

Solution

Lemma 0.1. $\forall n \in \mathbb{N}, u_{n}>0$, so u_{n+1} is well defined.
Proof 0.1. Obvious, by a quick induction.

- If $n=0, u_{0}=1>0$,
- If $n \geqslant 0$, and $u_{n}>0$, then $\frac{u_{n}}{2}>0$ and $\frac{1}{u_{n}}$ exists and is positive. So $u_{n+1}=\frac{u_{n}}{2}+\frac{1}{u_{n}}>0$.

First values

For question (ii), cf. Figure 1 or this array:

n	u_{n}
0	$u_{0}=1$
1	$u_{1}=1.5$
2	$u_{2} \simeq 1.4166666666666665186$
3	$u_{3} \simeq 1.4142156862745096646$
4	$u_{4} \simeq 1.4142135623746898698$
5	$u_{5} \simeq 1.4142135623730949234$
6	$u_{6} \simeq 1.4142135623730949234 \simeq \sqrt{2}$

Compute the limit

Lemma 0.2. $\forall n \in \mathbb{N}, u_{n+1}-\sqrt{2}=\frac{\left(u_{n}-\sqrt{2}\right)^{2}}{2 u_{n}}(>0)$.
Proof 0.2. Let $n \in \mathbb{N}$.

$$
\begin{aligned}
u_{n+1}-\sqrt{2} & =\frac{u_{n}}{2}+\frac{1}{u_{n}}-\sqrt{2} \\
& =\frac{u_{n}^{2}}{2 u_{n}}+\frac{2}{2 u_{n}}-\frac{2 \sqrt{2} u_{n}}{2 u_{n}} \\
& =\frac{u_{n}^{2}+2-2 \sqrt{2} u_{n}}{2 u_{n}} \\
u_{n+1}-\sqrt{2} & =\frac{\left(u_{n}-\sqrt{2}\right)^{2}}{2 u_{n}}>0 . \square
\end{aligned}
$$

Remark 1. So we have $\forall n \in \mathbb{N}, \sqrt{2} \leqslant u_{n}$ (with Lemma 0.2 it is obvious, because $\frac{1}{2 u_{n}}>0$).
Lemma 0.3. $\forall n \geqslant 1, u_{n+1} \leqslant u_{n} \leqslant u_{1}$.
Proof 0.3. Let $n \in \mathbb{N}$. By the previous Remark $\sqrt{1}, \sqrt{2} \leqslant u_{n}$, so $\frac{2}{u_{n}} \leqslant u_{n}$. Therefore, $u_{n+1}=$ $\frac{u_{n}+\frac{2}{u_{n}}}{2}=\frac{u_{n}}{2}+\frac{1}{u_{n}} \leqslant u_{n}$.

So the sequence $\left(u_{n}\right)_{n \geqslant 1}$ is non-increasing (in fact, you can prove also that it is decreasing, i.e. $u_{n+1}<$ u_{n}, because $u_{n} \in \mathbb{Q}, \forall n \in \mathbb{N}$ so Remark $\left\lceil 1\right.$ gives $\left.\sqrt{2}<u_{n}\right)$. So $\forall n \in \mathbb{N}, u_{n} \leqslant u_{1}=\frac{3}{2}=1.5$.
Conclusion 0.1. So that sequence is decreasing, lower-bounded (by $\sqrt{2}$), so it converges to a limit $l>0$. The only possible value for l is $\sqrt{2}$ (because it verifies $l=\frac{l+\frac{2}{l}}{2} \Leftrightarrow l^{2}=2$).

Remark 2. This method to approximate the numerical value of $\sqrt{2}$ is quite an old one. That Wikipédia page explains a little more about the history of this method, often refered as the Hero's method, or Babylonian method.

Remark 3. It can be generalized to approximate the square root of any $A>0$. Just take $u_{0}=\lceil A\rceil(=$ $\lfloor A\rfloor+1)$ and $\forall n \in \mathbb{N}, u_{n+1}=\frac{u_{n}+\frac{A}{u_{n}}}{2}$.
Bonus: do again the same exercise for the general case, showing that $u_{n} \underset{n \rightarrow+\infty}{ } \sqrt{A}^{+}$(i.e. by being always greater than \sqrt{A}).

Figure 1: The first values of u_{n}, from $n=0$ to $n=6$.

