1 Exercises to do before tutorials.

Ex.1.1) Show that the sequence $(\sqrt{n})_{n \in \mathbb{N}}$ diverges to $+\infty$.
Ex.1.2) Consider sequences given below by their terms $u_{n}(\forall n \in \mathbb{N})$. Check if each of these sequences are convergent or divergent. If they are convergent then compute the limits.
(i) $u_{n} \stackrel{\text { def }}{=} \frac{n^{2}+3 n-4}{4 n^{2}+5}$,
(iii) $u_{n} \stackrel{\text { def }}{=} \frac{n^{4}+7 n}{5 n^{4}+\cos \left(n^{2}\right)-\frac{1}{n}}, n \neq 0$,
(ii) $u_{n} \stackrel{\text { def }}{=} \frac{\sin \left(n^{2}\right)}{n}, n \neq 0$,
(iv) $u_{n} \xlongequal{\text { def }} \frac{a^{n}-b^{n}}{a^{n}+b^{n}}$, with $a, b>0$.

Ex.1.3) Is the product sequence of two lower-bounded sequences still lower-bounded?
Ex.1.4) Show that a non-decreasing sequence is lower-bounded.
Ex.1.5) Let u be an integer sequence (i.e. $u \in \mathbb{N}^{\mathbb{N}}$). Prove that u converges if and only if ${ }^{1}$ u is constant after a certain number of terms (i.e. $\left.\exists n_{0} \in \mathbb{N} /\left(\forall n \geqslant n_{0}, u_{n}=u_{n_{0}}\right)\right)$.

Ex.1.6) Use one of the convergence tests saw in lectures to explore the convergence/divergence of the following series:
(i) $\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}$,
(iv) $\sum_{n=1}^{\infty} \frac{1}{1000 n+1}$,
(ii) $\sum_{n=1}^{\infty} \frac{|\sin n x|}{n^{2}}$ (for $\left.x \in \mathbb{R}\right)$,
(v) $\sum_{n=1}^{\infty} \frac{(n!)^{2}}{(2 n)!}$,
(iii) $\sum_{n=2}^{\infty} \frac{n!}{(n+2)!}$,
(vi) $\sum_{n=1}^{\infty} \frac{1000^{n}}{n!}$.

Ex.1.7) Babylonian method) Let $u_{0}=1$ and define, for $n \in \mathbb{N}, u_{n+1}=\frac{u_{n}+\frac{2}{u_{n}}}{2}$.
(i) Show that the sequence $u=\left(u_{n}\right)_{n \in \mathbb{N}}$ is well defined.
(ii) Compute the first 6 terms (by using your calculator or smartphone). What do you think the limit will be?
(iii) Show that u is converging ${ }^{2}$, and compute its limit.

2 Exercises to do during or after tutorials.

Ex.2.1) Let u be a bounded sequence, satisfying: $\forall n \in \mathbb{N}^{*}, 2 u_{n} \leqslant u_{n-1}+u_{n+1}$. Let $v=\left(v_{n}\right)_{n \in \mathbb{N}}$ be given by $\forall n \in \mathbb{N}, v_{n} \stackrel{\text { def }}{=} u_{n+1}-u_{n}$. Show ${ }^{3}$ that v converges, and

[^0]compute its limit.
Ex.2.2) Let u be a convergent sequence. Let v be a sub-sequence of u. Show that then v converges (to the same limit).

Ex.2.3) Show the following equalities:
(i) $\sum_{n=1}^{\infty} \frac{2 n+1}{n^{2}(n+1)^{2}}=1$,
(ii) $\sum_{n=1}^{\infty} \frac{2^{n}+3^{n}}{6^{n}}=\frac{3}{2}$,
(iii) $\sum_{n=1}^{\infty} \frac{1}{(2 n-1)(2 n+1)}=\frac{1}{2}$,
(iv) $\sum_{n=2}^{\infty} \frac{\log \left(\left(1+\frac{1}{n}\right)^{n}(1+n)\right)}{\left(\log n^{n}\right)\left(\log (n+1)^{n+1}\right)}=\log _{2}(\sqrt{e})$.

Ex.2.4) Consider $u \in \mathbb{R}^{\mathbb{N}}$ a real sequence (i.e. a sequence with values being reals), and assume that the three sequences $\left(u_{2 n+1}\right)_{n \in \mathbb{N}},\left(u_{2 n}\right)_{n \in \mathbb{N}},\left(u_{3 n}\right)_{n \in \mathbb{N}}$ are all converging. Then show that u converges (to the same limit, obviously).

3 Bonus exercises.

Ex.3.1) Let u be a bounded sequence and v be a sequence diverging to $+\infty$. Show that $u+v$ diverges to $+\infty$.

Ex.3.2) Let u be a convergent sequence and v be a divergent sequence. Show that $u+v$ diverges. What can you say about the product sequence (u.v) ${ }_{n} \stackrel{\text { def }}{=} u_{n} \cdot v_{n}, \forall n \in \mathbb{N}$?

Ex.3.3) Let u and v be two sequences converging to l et l^{\prime}, respectively. We consider the two sequences w and w^{\prime} defined by: $\forall n \in \mathbb{N}, w_{n} \stackrel{\text { def }}{=} \min \left(u_{n}, v_{n}\right), w_{n}^{\prime} \xlongequal{\text { def }} \max \left(u_{n}, v_{n}\right)$. Show that both the sequences w and w^{\prime} converge and compute their limits.

Ex.3.4) Let u be a non-decreasing real sequence. If we assume that u has a sub-sequence which converges, then show that u also converges. (A sub-sequence is of the form $u_{\phi}=\left(u_{\phi(n)}\right)_{n \in \mathbb{N}}$ if $\phi: \mathbb{N} \mapsto \mathbb{N}$ is a non-decreasing function.)

[^0]: ${ }^{1}$ If and only if will be abbreviated "iff ".
 ${ }^{2}$ One could show that $\left(u_{n}\right)_{n \geqslant 1}$ is decreasing and lower-bounded by 1 .
 ${ }^{3}$ First prove that v is monotonic and bounded, then prove by contradiction that its limit is zero.

