1 Exercises to (try to) do before tutorials.

1.1 Prove the following classical inequalities:
(1) $\forall a, b \in \mathbb{R},(a+b)^{2} \leqslant 2\left(a^{2}+b^{2}\right)$,
(3) $\forall x \in \mathbb{R}^{+}, \forall n \in \mathbb{N},(1+x)^{n} \geqslant 1+n x$,
(2) $\forall a, b \in \mathbb{R},|a b| \leqslant \frac{a^{2}+b^{2}}{2}$,
(4) $\forall x \in \mathbb{R}, \forall a>1, \exists n \in \mathbb{N}, a^{n} \geqslant x$.
1.2 Set upper and lower bounds:
(1) Bound, for $x \in[0,3]$, the value of this expression $]^{1} \frac{x-1}{\mathrm{e}^{x}+1}$,
(2) Show that $\left\{\frac{\sin (x)-2 \cos (x)}{\mathrm{e}^{\sin x}}: x \in \mathbb{R}\right\}$ is a bounded set,
(3) Show 2 that $\left\{\sqrt{n^{3}+n+2}-\sqrt{n^{3}+1}: n \in \mathbb{N}\right\}$ is a bounded set,
1.3 Determine the biggest (resp. smallest) element, and an upper bound (resp. lower) of the following sets E (whenever they exist):
(1) $E=\left\{\frac{1}{n}, n \in \mathbb{N}^{*}\right\}$ (where $\mathbb{N} \stackrel{\text { def }}{=} \mathbb{Z} \cap \mathbb{R}^{+}$is the set of non-negative integers number, and $\left.\mathbb{N}^{*} \stackrel{\text { def }}{=} \mathbb{N} \backslash\{0\}=\{n: n \geqslant 1\}\right)$,
(2) $E=A+B$, with $\}^{3} A$ and B two close intervals of \mathbb{R} (where $A+B \stackrel{\text { def }}{=}\{x+y,(x, y) \in$ $A \times B\}$),
(3) $E=A-B$, with A and B two close intervals of \mathbb{R} (where $A-B \xlongequal{\text { def }}\{x-y,(x, y) \in$ $A \times B\}$),
(4) (extbfBonus:) What can we say if A and B are both non-empty, bounded and open intervals? And what if they are just bounded and non-empty subsets of \mathbb{R} ?
(5) $E=A \cup B$, with A and B two bounded sets of \mathbb{R} ?
(6) (extbfBonus:) $E=\left\{(-1)^{n} a+\frac{b}{n}, n \in \mathbb{N}^{*}\right\}$ with two parameters $a, b \in \mathbb{R}_{+}^{*}$ (where $\mathbb{R}_{+}^{*} \stackrel{\text { def }}{=}(\mathbb{R} \backslash\{0\}) \cap[0,+\infty)=\mathbb{R} \cap(0,+\infty)$ is the set of positive real numbers $)$.
1.4 Let A be a non-empty and upper bounded subset of \mathbb{R}, with $\sup A>0$. Show that A contains a non-negative element.
1.5 Let $a, b \in \mathbb{R}^{+}$(i.e. $a, b \geqslant 0$), with $a \geqslant b$. Simplify the expression: $\sqrt{a+2 \sqrt{a-b} \sqrt{b}}+$ $\sqrt{a-2 \sqrt{a-b} \sqrt{b}}$.
1.6 Let $a, b \in \mathbb{R}$, here and now on, E will be the integer part function ${ }^{4}$ (also written $\mathrm{E}(x)=\lfloor x\rfloor)$. Show the following statements:

[^0](1) $a \leqslant b \stackrel{\text { def }}{=}>\mathrm{E}(a) \leqslant \mathrm{E}(b)$ (E is a non-decreasing function),
(2) $\mathrm{E}(a)+\mathrm{E}(b) \leqslant \mathrm{E}(a+b) \leqslant \mathrm{E}(a)+\mathrm{E}(b)+1$.

2 Exercises to (try to) do during or after tutorials.

2.1 Let B a bounded and non-empty subset of \mathbb{R}, and $A \subset B$ is non-empty. Show that $\sup A \leqslant \sup B$.
2.2 Solve, in \mathbb{R}, the following equation: $\sqrt{2-2 x}+\sqrt{3+x}=1$.
2.3 Let f, g be bounded ${ }^{5}$ functions from \mathbb{R} to \mathbb{R}. Prove the following inequality:

$$
\sup _{x \in \mathbb{R}}|(f+g)(x)| \leqslant \sup _{x \in \mathbb{R}}|f(x)|+\sup _{x \in \mathbb{R}}|g(x)| .
$$

2.4 For $x \in \mathbb{R}$ and $n \in \mathbb{N}^{*}$, show this property: $\mathrm{E}\left(\frac{\mathrm{E}(n x)}{n}\right)=\mathrm{E}(x)$.

3 Bonus exercises.

You can try to solve them after the tutorials, or before exams to practice.
3.1 Prove these classical inequalities:
(1) $\forall x \in \mathbb{R},|\sin (x)| \leqslant|x|$,
(2) $\forall x \in\left[0, \frac{\pi}{2}\right], \frac{2}{\pi} x \leqslant \sin (x) \leqslant x$,
3.2 Caracterize the set of the functions $f \in \mathcal{F}(\mathbb{R}, \mathbb{R}) \stackrel{\text { def }}{=} \mathbb{R}^{\mathbb{R}}$ (i.e. the set of all functions $f: \mathbb{R} \longleftrightarrow \mathbb{R}$) verifying: $\forall x, y \in \mathbb{R},|f(x)-f(y)|=|x-y|$ (such function is called an isometry).
3.3 Let $n \in \mathbb{N}^{*}$, and $\left(x_{i}\right)_{i \in[1, \ldots, n]}$ be n non-negative real numbers. Prove the following:

$$
\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} \frac{1}{x}{ }_{i}\right) \geqslant n^{2}
$$

3.4 (1) Prove: $\forall n \in \mathbb{N}^{*}, \sqrt{n+1}-\sqrt{n}<\frac{1}{2 \sqrt{n}}<\sqrt{n}-\sqrt{n-1}$,
(2) Compute the integer part (i.e. E applied to) of $\frac{1}{2} \sum_{k=1}^{n^{2}} \frac{1}{\sqrt{k}}$, pour $n \in \mathbb{N}^{*}$.

[^1]
[^0]: ${ }^{1}$ Be sure to verify that it is well defined before using it!
 ${ }^{2} \underline{\text { Hint: }}$ conjugate quantities like $x-y=\frac{(x-y)(x+y)}{x+y}=\frac{x^{2}-y^{2}}{x+y}$, and $x+y=\frac{x^{2}-y^{2}}{x-y}($ if $x \pm y \neq 0)$.
 ${ }^{3}$ One could show that, if $A=[a, b]$ and $B=[c, d]$ are two close intervals, then $A+B=[a+c, b+d]$.
 ${ }^{4} \forall x \in \mathbb{R}, \mathrm{E}(x)$ is given by $\mathrm{E}(x) \in \mathbb{Z}$ and $\mathrm{E}(x) \leqslant x<\mathrm{E}(x)+1$.

[^1]: ${ }^{5} f: \mathbb{R} \longleftrightarrow \mathbb{R}$ is bounded if there is a $M \in \mathbb{R}$ such that $\forall x \in \mathbb{R},|h(x)| \leqslant M$.

