1 Exercises to do before tutorials.

Ex.1.1) Show that sum $(f+g)$ of two functions (f, g) which are individually continuous at a point $\left(x_{0}\right)$ is continuous at that point.

Ex.1.2) Compute the following left-hand side limits, right-hand side limits, and limits (if they exist):
(a) $\lim _{x \rightarrow 0} \frac{|x|}{x}$,
(d) $\lim _{h \rightarrow 0} \frac{(t+h)^{2}-t^{2}}{h}(t \in \mathbb{R}$ is fixed $)$,
(b) $\lim _{x \rightarrow 0} \frac{\sqrt{x^{2}}}{x}$,
(e) $\lim _{x \rightarrow a} \frac{\sin x-\sin a}{x-a}(a \in \mathbb{R}$ is fixed $)$,
(c) $\lim _{x \rightarrow 1} \frac{2 x^{2}-3 x+1}{x-1}$,
(f) $\lim _{x \rightarrow 0} \frac{\sin 5 x}{\sin x}$.

Ex.1.3) Use the fact ${ }^{11}$ that $|\sin (x)|<|x|$, true for all $0<|x|<\frac{\pi}{2}$ to show that sin is continuous at 0 . Next, use the identity $\cos 2 x=1-2 \sin ^{2} x(\forall x \in \mathbb{R})$ to show that cos is also continuous at 0 . Finally, use the standard formula for $\sin (x+h)$ and $\cos (x+h)$ to show that sin and cos are continuous everywhere on \mathbb{R}.

Ex.1.4) Let f be a real polynomial function of degree $n>0$ such that the last and first coefficients have opposite signs. Prove ${ }^{2}$ that there exists a positive x (i.e. $x \in \mathbb{R}_{+}^{*}$) such that $f(x)=0$.

2 Exercises to do during or after tutorials.

Ex.2.1) Let f and g be given below and let $h=f \circ g$. In each case, determine the domains of f, g, and h and given direct formula for h. Finally, investigate the continuity of h :
(i) $f(x)=x^{2}-2 x, g(x)=x+1$,
(iii) $f(x)=\sqrt{x}, g(x)=x+\sqrt{x}$,
(ii) $f(x)=\sqrt{x}, g(x)=x^{2}$,
(iv) $f(x)=\sqrt{x}, g(x)=\sin (x)$.

Ex.2.2) If n is an odd positive integer $(n \in 2 \mathbb{N}+1)$ and $a<0$ prove that there is exactly one negative $b<0$ such that $b^{n}=a$. And what happens if n is even?

[^0]Ex.2.3) Let $f=\tan$ (on a certain domain you should precise). Although $f(\pi / 4)=1$ and $f(3 \pi / 4)=-1$, there is no x in $[\pi / 4,3 \pi / 4]$ such that $f(x)=0$. Why does this not contradict the intermediate value theorem?

Ex.2.4) Let $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto x \sin \left(\frac{1}{x}\right)$ if $x \neq 0$.
What should be the value of $f(0)$ so that f is continuous at 0 .
Ex.2.5) For $a, b \in \mathbb{R}, a<b$, let $f:[a, b] \rightarrow \mathbb{R}$ be such that $\|^{3} \forall x, y \in[a, b], \mid f(x)-$ $f(y)|\leqslant L \times|x-y|$, for some $L \geqslant 0$. Show that f is continuous on $[a, b]$.

Ex.2.6) Let $f: \mathbb{Z} \rightarrow \mathbb{R}$ be well-defined. Show that f is continuous everywhere on \mathbb{Z}.

3 Bonus exercises.

Ex.3.1) Let $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto \sin \left(\frac{1}{x}\right)$ if $x \neq 0$. Can we choose $f(0)$ such that f is continuous at 0 ? What about limit?
Ex.3.2) For $x \in \mathbb{R}$, show that the series $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ is convergent (this shows that e^{x} is well-defined for all $x \in \mathbb{R}$). Next, show that there exists $\lambda>0$ such that $\mathrm{e}^{x} \leqslant 1+\lambda x$ for all $x \in[0,1]$. Finally, show that $\exp : x \mapsto \mathrm{e}^{x}$ is continuous at 0 , and subsequently everywhere in \mathbb{R}.

Ex.3.3) Use the fact that $\exp : x \mapsto \mathrm{e}^{x}$ is continuous to show that $\ln : x \mapsto \ln x$ is continuous in its domain.

Ex.3.4) Let $f:[0,1] \rightarrow \mathbb{R}$ be continuous on $[0,1]$. Assume that $\forall x \in[0,1], 0 \leqslant$ $f(x) \leqslant 1$. Show that there exists $c \in[0,1]$ such that $f(c)=c$.

Ex.3.5) Is it possible to have a function $f: \mathbb{R} \rightarrow \mathbb{R}$, well-defined everywhere, but continuous nowhere?
Remember that \mathbb{Q} is the set of rationals numbers, dense in \mathbb{R}.
Show that $\mathbb{1}_{\mathbb{Q}}(\mathbb{R} \rightarrow \mathbb{R}, x \mapsto 1$ if $x \in \mathbb{Q}, 0$ otherwise) is continuous nowhere, by using a sequence $\left(r_{n}\right)_{n \in \mathbb{N}} \in \mathbb{Q}^{\mathbb{N}}, r_{n} \rightarrow{ }_{n \rightarrow+\infty} \alpha$ for a $\alpha \in \mathbb{R} \backslash \mathbb{Q}$, to show that $\mathbb{1}_{\mathbb{Q}}$ is not continuous at α, (and conversely $\left(\beta_{n}\right)_{n \in \mathbb{N}} \in(\mathbb{R} \backslash \mathbb{Q})^{\mathbb{N}}, b_{n} \rightarrow{ }_{n \rightarrow+\infty} q$ for a $q \in \mathbb{Q}$, for non-continuity at q).

[^1]
[^0]: ${ }^{1}$ You can also try to prove that fact.
 ${ }^{2}$ You should start by naming all these coefficients $a_{0}, \ldots, a_{n} \in \mathbb{R}$, and use contradiction ("if f has no zero in \mathbb{R}_{+}^{*}, then $\ldots "$)

[^1]: ${ }^{3} f$ is said to be L-LIPSCHITZ, or LiPSChitz continuous of ratio L on $[a, b]$.

