1 Field Axioms

Let \mathbb{F} denote a set on which two binary operators ${ }^{1} \oplus$ and \odot are defined, that is, two functions $\oplus: \mathbb{F} \times \mathbb{F} \rightarrow \mathbb{F}$ and $\odot: \mathbb{F} \times \mathbb{F} \rightarrow \mathbb{F}$.

Let $x, y \in \mathbb{F}$, then we denote the result of the \oplus operator as $x \oplus y$, and the \odot operator as $x \odot y$. Unless it is ambiguous, we denote $x \odot y$ as simply $x y$.

For the following axioms ${ }^{2}$, let $x, y, z \in \mathbb{F}$.

Axiom 1.1 Commutative laws: $x \oplus y=y \oplus x$ and $x y=y x$.
Axiom 1.2 Associative laws: $x \oplus(y \oplus z)=(x \oplus y) \oplus z$ and $x(y z)=(x y) z$.
Axiom 1.3 Distributive laws: $x(y \oplus z)=x y \oplus x z$.
Axiom 1.4 Identity elements: There exist two (distinct) real numbers 0 and 1, such that for every $x \in \mathbb{F}, x \oplus 0=x$ and $x \odot 1=x$.

Axiom 1.5 Negatives: For every $x \in \mathbb{F}$ there exists $y \in \mathbb{F}$ such that $x \oplus y=0$.
Axiom 1.6 Reciprocals: For every $x \in \mathbb{F} \backslash\{0\}$ (i.e. $x /=0$), there exists $y \in \mathbb{F} \backslash\{0\}$ such that $x y=1$. We denote such y by x^{-1}, called the reciprocal of x.

Theorem 1. Let $a, b, c, d \in \mathbb{F}$.
Property 1.1: If $a \oplus b=a \oplus c$ then $b=c \quad$ (i.e. every element is cancellable).
Property 1.2: There exists a unique $x \in \mathbb{F}$ such that $a \oplus x=b$. (We denote x by $b-a$. Specifically, $0-a$ is $-a$, the negative of $a)$.

Property 1.3: $b-a=b \oplus(-a)$.
Property 1.4: $-(-a)=a \quad$ (i.e. the function $\mathbb{F} \longleftrightarrow \mathbb{F}, x \mapsto-x$ is an involution).
Property 1.5: $0 \odot a=a \odot 0=0 \quad$ (i.e. 0 is absorbing).
Property 1.6: $a(b-c)=a b-a c$.
Property 1.7: If $a b=a c$ and $a \neq 0$ then $b=c$.
Property 1.8: If $a \neq 0$ then there exists a unique $x \in \mathbb{F}$ such that $a x=b$ (we denote this x by b / a or $\frac{b}{a}$. Specifically, $1 / a$ is a^{-1}, the reciprocal of a.).

[^0]Property 1.9: If $a \neq 0$ then $b / a=b \odot a^{-1}$.
Property 1.10: If $a \neq 0$ then $\left(a^{-1}\right)^{-1}=a$.
Property 1.11: If $a b=0$ then $a=0$ or $b=0$.
Property 1.12: $(-a) b=-(a b)$ and $(-a)(-b)=a b$.
Property 1.13: $\frac{a}{b} \oplus \frac{c}{d}=\frac{a d \oplus b c}{b d}$ if $b \neq 0$ and $d \neq 0$.
Property 1.14: $\frac{a}{b} \frac{c}{d}=\frac{a c}{b d}$ if $b \neq 0$ and $d \neq 0$.
Property 1.15: $\left(\frac{a}{b}\right) /\left(\frac{c}{d}\right)=\frac{a d}{b c}$ if $b \neq 0, c \neq 0$, and $d \neq 0$.

2 Problems

Problem 1. Prove at least 12 properties among the 15 exposed in Theorem 1.
Problem 2. Verify ${ }^{3}$ whether all the field axioms and all the properties of Theorem 1 hold for:

1. $\mathbb{F}=\mathbb{Z}$, the set of integers, $\oplus=+$, and $\odot=\cdot$, the usual addition and multiplication.
2. $\mathbb{F}=\mathbb{Q}$, the set of rational numbers, $\oplus=+$, and $\odot=\cdot$, the usual addition and multiplication.
3. Let n be a positive integer greater than 1 and let $\mathbb{F}=\{0,1,2, \ldots, n-1\}$. For $x, y \in \mathbb{F}$, we define $x \oplus y=(x+y) \bmod n$ and $x \odot y=(x y) \bmod n$. Furthermore, what is -1 in this case and check if $(-1)(-1)=1$.
4. (extbfBonus:)Let S be a nonempty set, and let \mathbb{F} be such that $A \in \mathbb{F}$ if and only if $A \subseteq S$, that is, \mathbb{F} contains all the subsets of S including \varnothing and S (\mathbb{F} is called the power set of S , set of all subsets of S). Define $\oplus=\cup: \mathbb{F} \times \mathbb{F} \rightarrow \mathbb{F}$ and $\odot=\cap: \mathbb{F} \times \mathbb{F} \rightarrow \mathbb{F}$, the union and the intersection operators, respectively. (\mathbb{F} can be written as 2^{S}.)
Example: if $S=\{a, b\}$ with two elements, then $F=\{\varnothing,\{a\},\{b\},\{a, b\}\}$, with four "elements" being subsets of S. If S is finite, then $\operatorname{Card} F=2^{\text {Card } S}$.
[^1]
[^0]: ${ }^{1}$ Also called internal composition laws.
 ${ }^{2}$ An axiom is a fact, assumed as true. You do not have to try to prove these axioms!

[^1]: ${ }^{3}$ When you think one of 6 axioms is not true for this particular \mathbb{F}, you can try to prove this with a counter-example.

