Complex numbers : Ex.2.4

Resolve in \mathbb{C} the following equation (z being the unknown): $z^{4}+z^{3}+z^{2}+z+1=0$. One could introduce the new variable $Z:=z+\frac{1}{z}$. Then show that the solutions are all $5^{\text {th }}$ roots of unity (i.e. in the set \mathbb{U}_{5}), and use this to compute the value of $\cos \left(\frac{2 \pi}{5}\right)$.

Solution Let call (E) this equation $z^{4}+z^{3}+z^{2}+z+1=0$, and S the set of its solutions. We know that S has exactly four elements (D'Alembert-Gauss' theorem).

Lemma 1. $z \in S \stackrel{\text { def }}{=}>z \neq 0$ and $z \neq 1$.
Proof 1. Obvious, because $0^{4}+0^{3}+0^{2}+0+1=1 \neq 0$ and $1^{4}+1^{3}+1^{2}+1+1=5 \neq 0$.
Lemma 2. $z \in S \stackrel{\text { def }}{=}>z^{5}=1$ (i.e. $z \in \mathbb{U}_{5}$).
Proof 2. If $z^{4}+z^{3}+z^{2}+z+1=0$, then by multiplying by $z-1$ on both sides, we get $(z-1)\left(z^{4}+\right.$ $\left.z^{3}+z^{2}+z+1\right)=0$, and by using the well-known identity $(z-1)\left(z^{4}+z^{3}+z^{2}+z+1\right)=z^{5}-1$, so $z^{5}-1=0$, i.e. $z^{5}=1$ (which can be written as $z \in \mathbb{U}_{5}$ by definition of $\mathbb{U}_{k}, k \in \mathbb{N}^{*}$)).

Remark 1. Here, we can already state that $S=\mathbb{U}_{5} \backslash\{1\}$, directly from these two lemmas (1) and 2).

Trying to find S Let $z \in \mathbb{C}$.

$$
z \in S \Leftrightarrow z \in S \text { and } z \neq 0
$$

We can assume $z \neq 0$, so $Z(z) \stackrel{\text { def }}{=} z+\frac{1}{z} \in \mathbb{C}$ is well defined.

$$
\begin{aligned}
z \in S & \Leftrightarrow z \in S \text { and } Z(z)^{2}+Z(z)-1=0 \\
& \Leftrightarrow z \in S \text { and } Z(z)=\frac{-1 \pm \sqrt{5}}{2}
\end{aligned}
$$

Let call $\phi_{1,2} \stackrel{\text { def }}{=} \frac{-1 \pm \sqrt{5}}{2} \in \mathbb{R}$. We have $\phi_{2}<\phi_{1}$.

$$
\begin{aligned}
z \in S & \Leftrightarrow z \in S \text { and } z+\frac{1}{z}=\phi_{1,2} \\
& \Leftrightarrow z \in S \text { and } z^{2}-\phi_{1,2} z+1=0
\end{aligned}
$$

For ϕ_{1} If $z^{2}-\phi_{1} z+1=0$, then $z=z_{1,2}=\frac{\phi_{1} \pm i \sqrt{\mathbb{D e l t a}}}{2}$ if $\mathbb{D e l t a} a_{1} \stackrel{\text { def }}{=}-\frac{5+\sqrt{5}}{2}<0$.
Conversely, we verify that these two values $z_{1,2}$ are solutions of (E) (and in \mathbb{U}_{5}, i.e. $z_{1,2}^{5}=1$, even if we already know that thanks to Lemma 2 .

For ϕ_{2} If $z^{2}-\phi_{2} z+1=0$, then $z=z_{3,4}=\frac{\phi_{2} \pm i \sqrt{\mathbb{D} e l t a_{2}}}{2}$ if \mathbb{D} elta ${ }_{2} \xlongequal{\text { def }}-\frac{5-\sqrt{5}}{2}<0$.
Conversely, we verify that these two values $z_{3,4}$ are solutions of (E) (and in \mathbb{U}_{5}, i.e. $z_{3,4}^{5}=1$, even if we already know that thanks to Lemma 2 .
Conclusion 1. Therefore, we conclude that $S=\left\{z_{1}, z_{2}, z_{3}, z_{4}\right\}=\left\{\frac{\phi_{1} \pm i \sqrt{\mathbb{D} e l t a_{1}}}{2}, \frac{\phi_{2} \pm i \sqrt{\mathbb{D} e l t a_{2}}}{2}\right\}$.

Computing $\cos \left(\frac{2 \pi}{5}\right)$ We know that $\mathbb{U}_{5}=\left\{\mathrm{e}^{i k \pi / 5}, k \in[0,4]\right\}$. Therefore, $\cos \left(\frac{2 \pi}{5}\right)$ is the real part of one of the $5^{\text {th }}$ root of unity. Thanks to Remark $1, S=\mathbb{U}_{5} \backslash\{1\}$, so $\cos \left(\frac{2 \pi}{5}\right)=\max (\mathcal{R} e(z), z \in S)=$ $\mathcal{R} e\left(z_{1}\right)=\frac{\phi_{1}}{2}=\frac{\sqrt{5}-1}{4}$. (A small drawing could help).

Conclusion 2. Hence $\cos \left(\frac{2 \pi}{5}\right)=\frac{\sqrt{5}-1}{4} \simeq 0.309016$.
Remark 2. You can numerically check this with your calculator.

Remark 3. This method is similar to the one historically used by Gauss to compute $\cos \left(\frac{2 \pi}{17}\right)$, to prove that the polygon with 17 sides is constructible with a straightedge and a compass, cf. on wikipédia.

