1 Exercises to (try to) do before tutorials.

1. Find ${ }^{1}$ a necessary and sufficient condition (NSC) for $z \in \mathbb{C}$ to satisfy the identity: $|z+i|=|z-i|$.
2. Resolve (in \mathbb{C}) the following equations:
(1) $z^{2}+(1-i) z-1+\frac{1}{4}=0$,
(2) $z^{2}+(2-3 i) z-6 i=0$,
(3) $3 z^{2}+(1+i) z+2=0$.
3. Write on polar form the following complex numbers (i.e. find the modulus and one argument): $1+i, \frac{\sqrt{3}}{2}-\frac{i}{2}, 1+\mathrm{e}^{i \theta}$ for $\theta \in \mathbb{R}$, and $\mathrm{e}^{i a}+\mathrm{e}^{i b}$ for $a, b \in \mathbb{R}$.
4. Compute the product of all the $n^{\text {th }}$ roots of unity in \mathbb{C} (for n a natural integer, bigger than 2), i.e. the product $\prod_{z \in \mathbb{U}_{n}} z$, when $\mathbb{U}_{n}=\left\{z \in \mathbb{C}: z^{n}=1\right\}$.
5. Let $z, z^{\prime} \in \mathbb{C}$.
(1) Prove the following identity: $\left|z+z^{\prime}\right|^{2}+\left|z-z^{\prime}\right|^{2}=2\left(|z|^{2}+\left|z^{\prime}\right|^{2}\right.$) (which is called the parallelogram identity).
It could be a good idea to illustrate the situation with a drawing, and try to justify graphically the name of this identity.
(2) Conclude that one could have: $|z|+\left|z^{\prime}\right|=\left|a+\frac{z+z^{\prime}}{2}\right|+\left|a-\frac{z+z^{\prime}}{2}\right|$ with a being one square root of $z z^{\prime}$.

2 Exercises to (try to) do during or after tutorials.

1. Let $u \in \mathbb{C} \backslash\{1\}$ and $z \in \mathbb{C} \backslash \mathbb{R}$. Prove the following equivalence: $|u|=1 \Leftrightarrow \frac{z-u \bar{z}}{1-u} \in$ \mathbb{R}.
2. Simplify the following expressions: $\tan (3 \pi+\theta), \cos \left(\frac{\pi}{2}-\theta\right)$, where θ is a real such that these expressions make sense.
3. Simplify the expressions $\cos \left(\frac{\pi}{8}\right)$ and $\sin \left(\frac{\pi}{8}\right)$, first by using a trigonometric method and then an algebric ${ }^{2}$ one.

[^0]4. Resolve in \mathbb{C} the following equation (z being the unknown): $z^{4}+z^{3}+z^{2}+z+1=0$. One could introduce the new variable $Z:=z+\frac{1}{z}$. Then show that the solutions are all $5^{\text {th }}$ roots of unity (i.e. in the set \mathbb{U}_{5}), and use this to compute the value of $\cos \left(\frac{2 \pi}{5}\right)$.
5. Resolve in \mathbb{C} the following equation (in z): $(z+1)^{6}+(z-1)^{6}=0$.
6. Let a be a complex number of modulus 1 (i.e. $a \in \mathbb{U}$) and z_{1}, \ldots, z_{n} the complex solutions of the equation $z^{n}=a$, for some $n \in \mathbb{N}^{*}$ (i.e. the $n^{\text {th }}$ roots of a). Show that the points of complex affixes $\left(1+z_{1}\right)^{n}, \ldots,\left(1+z_{n}\right)^{n}$ are aligned in an euclidian plan ${ }^{3}$.

3 Bonus exercises.

1. Simplify and compute the following integrals: $\int_{0}^{\frac{\pi}{2}} \sin ^{4}(x) \mathrm{d} x$, and $\int_{0}^{\frac{\pi}{2}} \cos ^{5}(x) \mathrm{d} x$.
2. Resolve (in \mathbb{R}) the following equations:
(1) $\cos (x)+\sin (x)=0$,
(2) $\sin (4 x)-\sqrt{3} \sin (3 x)+\sin (2 x)=0$.
3. Let $\xi=\mathrm{e}^{\frac{2 i \pi}{n}}$ with $n \in \mathbb{N}^{*}$. Compute the sum $\sum_{k=0}^{n}\left|\xi^{k}-1\right|$.
4. Let us consider a recursive sequence, defined by its first two terms u_{0} and u_{1}, two complex numbers, and by its recurrence equation: $u_{n+2}-u_{n+1}=a\left(u_{n+1}-u_{n}\right)$, for one $a \in \mathbb{C}$ and for any $n \in \mathbb{N}$. Find a necessary and sufficient condition on this parameter a for the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ to be periodica $\mathbb{4}^{4}$
5. Let a and b be two real numbers (i.e. $a, b \in \mathbb{R}$). Resolve, in \mathbb{C}, the following equation:

$$
z^{4}-4 \cos (a) \cos (b) z^{3}+2(1+\cos (2 a)+\cos (2 b)) z^{2}-4 \cos (a) \cos (b) z+1=0 .
$$

[^1]
[^0]: ${ }^{1}$ One could try to raise to the square and use the formula $|z|^{2}=z \bar{z}$.
 ${ }^{2}$ For the second method, if $z=\mathrm{e}^{i \frac{\pi}{8}}$ then $z^{2}=\mathrm{e}^{i \frac{\pi}{4}}$ and then we know a method to compute one square root of a complex number.

[^1]: ${ }^{3}$ One could try to see if there is a line, coming from the origin, and passing by each of these points. This could be expressed with a criteria over their arguments.
 ${ }^{4}$ A sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ is said to be periodical when there is an integer $T \geqslant 1$, called a period, such that $\forall k \in \mathbb{N}, u_{k+T}=u_{k}$.

