Additional exercises.

- 1. About dense subset of \mathbb{R} .
 - (1) Let X be a dense subset of \mathbb{R} , prove that X is unbounded.
 - (2) Prove that even if we remove a finite number of elements in X, we still have a dense set in \mathbb{R} . Is this still the case if we remove an infinite¹ number of elements?
 - (3) Now prove² that if we remove a countable subset of X, we still have a dense subset of \mathbb{R} .
 - (4) Finally, let $X \subset Y \subset \mathbb{R}$. Assume that X is finite, and dense $in^3 Y$. Prove that Y = X.

¹As the next question will show, it depends on the sense we give to infinite.

²One could try to prove that, no matter how small it is, a real non-empty open interval (a, b) is never countable.

³We keep the same definition of density as in \mathbb{R} , with sequences and limits.