MA 101: Calculus and Introduction to Analysis

Mid Term Examination II, October 18, 2014 Duration: 120 min; Each problem carries 20 marks

Problem 1. For $a, b \in \mathbb{R}, a < b$, let $f : [a, b] \to \mathbb{R}$ be such that for every $x \in [a, b]$, $A(x) = \int_{a}^{x} f(t)dt$ exists. Let $c \in (a, b)$. Consider the following 10 statements:

- (a) f is continuous at c,
 (b) f is discontinuous at c,
 (c) A is continuous at c,
 (c) A is discontinuous at c,
- (c) f is continuous and *increasing* on (γ) A is convex on (a, b),
- (d) f'(c) exists,
- (e) f' is continuous at c,

(ϵ) A' is continuous at c.

(δ) A'(c) exists,

Hint: For any $g : [x_1, x_2] \to \mathbb{R}$, if g is differentiable on (x_1, x_2) and g' is increasing then g is convex on (x_1, x_2) .

In the table shown below (that should be copied on your answer script), mark a T(True) whenever a statement labeled with a Latin letter (the rows) implies a statement labeled with a Greek letter (the columns). For every 'T', put in a few words of logical explanation, <u>outside the table</u>.

	α	β	γ	δ	ϵ
a					
b					
с					
d					
е					

Note: There are 10 T's in total, each carries 2 marks, 1 for identification and 1 for logical justification. Warning: a 'T' in a wrong place gives -0.5 marks.

Problem 2. (2.a) Let $f : \mathbb{R} \to \mathbb{R}$ be differentiable at $a \in \mathbb{R}$. Evaluate the following limit if it exists:

$$\lim_{x \to a} \frac{xf(a) - af(x)}{x - a}$$

(2.b) For every $x \in \mathbb{R}$, use Taylor's theorem (with an explicit remainder) to show that $1 - \cos(2x) = 2x^2 - \frac{2}{3}\cos(2c)x^4$ for some $c \in (0, x)$. Note that this c can depend on x. Now, using the above expression evaluate the limit

$$\lim_{x \to 0} \frac{1 - \cos(2x)}{3x^2}$$

Finally, verify your answer using L'Hôpital's rule or any other technique you are familiar with.

Problem 3. Using the Fundamental Theorem of Calculus and the chain rule for differentiation, compute the first derivatives of the following functions of x (written in form of integrals):

(3.a)
$$\int_{-\pi/4}^{\pi/4} \tan^2(u) du,$$
 (3.c)
$$\int_{0}^{x} \left(\int_{0}^{u} \frac{1}{1+v^2} dv \right) du,$$

(3.b)
$$\int_{0}^{\left(\int_{0}^{x} e^{-t^2} dt\right)} \sin(u) du,$$
 (3.d)
$$\int_{1}^{e^x} \ln(u^2) du.$$

- **Problem 4.** (4.a) Using Rolle's theorem, show that between every pair of real solutions to the equation $\cos(x) = e^{-x}$ there is a real solution to the equation $\sin(x) = -e^{-x}$.
- (4.b) Using Rolle's theorem, prove that a cubic polynomial can have at most three real roots (knowing that a quadratic polynomial can have at most two real roots). Extend this idea and using mathematical induction, show that a polynomial of degree n can have at most n real roots.

Problem 5. We would like to show that for every $x \in (0, \frac{\pi}{2})$, $x - \frac{x^3}{6} \le \sin(x) \le x$. We will use two different approaches for these two inequalities:

- 1. Let $f : [a, b] \to \mathbb{R}$ be a function continuous on [a, b], and differentiable on (a, b). First, by using Taylor's theorem prove the standard result : "if f has a non-negative first derivative, then f is non-decreasing on [a, b]". Then use it (with the good f) to show the *right* inequality : $\sin(x) \le x$ on $(0, \frac{\pi}{2})$.
- 2. To prove the *left* inequality, $x \frac{x^3}{6} \leq \sin(x)$ on $(0, \frac{\pi}{2})$, use the Taylor's theorem (with an explicit remainder), to write $\sin(x)$ in terms of a polynomial and a remainder.
- 3. Bonus (for +3 marks): How about the case where $x \ge \frac{\pi}{2}$?