Remark 1. This document have to be proofread!

1 Problem on Convexity.

We need interesting problem here !

- Ex.1.1) (Hard) Let $f : [0,1] \to \mathbb{R}$ be continuous and twice differentiable on (0,1). Prove that if $f''(x) \ge 0$ for every $x \in (0,1)$, then f is convex.
- Ex.1.2) Let f: [a, b] → ℝ be continuous and differentiable on (a, b). Prove that if f'(x) ≥ 0 for every x ∈ (a, b), then f is non-increasing (ie ∀x, y ∈ [a, b], x > y ⇒ f(x) ≥ f(y)). And prove that if f'(x) > 0 for every x ∈ (a, b), then f is increasing (ie ∀x, y ∈ [a, b], x > y ⇒ f(x) > f(y)).
- Ex.1.3) MORE !
- Ex.1.4) MORE !

2 Problem on Differential Calculus.

• Ex.2.1) (From SATYA's suggestion) Let $f : \mathbb{R} \to \mathbb{R}$ such that for all x and y in \mathbb{R} ,

$$|f(x) - f(y)| \le |x - y|^3.$$

Prove that f is a constant function.

- Ex.2.2) (From SATYA's suggestion) Show that between any two solutions x_b and x_2 of the equation $e^x \cos(x) = 1$ there exists at least one root y of the equation $e^x \sin(x) 1 = 0$ (ie $y \in (x_1, x_2)$.
- Ex.2.3) Find all the functions $f : \mathbb{R} \to \mathbb{R}$ differentiable everywhere on \mathbb{R} such that

$$\forall x, y \in \mathbb{R}, f(x+y) = f(x) + f(y),$$

• Ex.2.4) On which domain (of ℝ), the following functions are continuous and on which domain are they differentiable?

a)
$$f_1: x \mapsto x |x|$$
 b) $f_2: x \mapsto \frac{x}{|x|+1}$

• Ex.2.5) Study the differentiability of these functions:

a)
$$g_1 : x \mapsto \sqrt{x^2 - x^3}$$
 b) $g_2 : x \mapsto (x^2 - 1) \arccos(x^2)$.

• Ex.2.6) Let $f : \mathbb{R} \to \mathbb{R}$ be a function, differentiable at the point $a \in \mathbb{R}$. Study

$$\lim_{x \to a} \frac{xf(a) - af(x)}{x - a}.$$

1

$$f(a) = f(b) = 0$$
 and $f'(a) > 0$, $f'(b) > 0$.

Prove that there exists $c_1, c_2, c_3 \in (a, b)$ such that $c_1 < c_2 < c_3$ and

$$f'(c_1) = f(c_2) = f'(c_3) = 0.$$

One could think of using the intermediate value theorem, and the ROLLE's theorem.

- Ex.2.8) Domain of definition and domain of differentiability of the function $x \mapsto \ln(x+1+x^2)$?
- Ex.2.9) Bound the error when we approximate $\sqrt{10001}$ by 100.

<u>Hint</u>: one could think of using TAYLOR expansion of order 1 at the point x = 0, also called a linearisation, for the function $f : x \to \sqrt{10000}\sqrt{1+x}$, by observing that x = 1/10000 is small regarding to 1, so close to 0.

3 Problem on Integration.

- Ex.3.1) (Require integration by part) Let $I_n = \int_0^{\pi/2} \cos^n(t) dt$. Compute I_0 , et I_1 . Show that for all $n \ge 2$, $I_n = I_{n-2}$. Conclude that the sequence $u = (u_n)_{n \in \mathbb{N}} = (n+1)I_nI_{n+1})_{n \ge 0}$ is constant.
- Ex.3.2) (Hard) Domain of definition, domain of differentiability and derivative of the function $f: x \mapsto f(x) = \int_x^{x^2} \frac{e^{-t^2}}{1+t} dt$.

2

• Ex.3.3) Let f be a continuous function on [0, 1], satisfying $\int_0^1 f(t) dt = \frac{1}{2}$. Show the existence of a $c \in [0, 1]$ such that f(c) = c.

<u>Hint</u>: What can you say about a continuous function which does not cancel on [0, 1]? Study $\int_0^1 (f(t) - t) dt$ to conclude.

• Ex.3.4) Show that
$$\int_0^{\frac{\pi}{2}} \frac{\sin(x)}{x} dx \ge \int_0^{\frac{\pi}{2}} \frac{\sin(x)}{x} dx.$$

• **Ex.3.5**) By using simple Riemann sums, compute $\int_0^1 x^2 dx$.

<u>Hint</u>: Remind that $\sum_{1}^{n} k^2 = \frac{n(n+1)(n+2)}{6}$ is true for any $n \in \mathbb{N}$ (bonus point of you can explain how to prove this formula!).

• Ex.3.6) MORE !

4 Problem on Special Functions.

• **Ex.4.1**) For $a, b, c \in \mathbb{R}$, which of the following relationships are true?

1)
$$(a^b)^c = a^{bc}$$

5) $(ab)^c = a^{c/2}b^{c/2}$
2) $a^ba^c = a^{bc}$
3) $a^{2b} = (a^b)^2$
5) $(a^b)^c = a^{(b^c)}$
6) $(a^b)^c = (a^c)^b$

- Ex.4.2) (Hard) Let $f : \mathbb{R} \to \mathbb{R}$ be continuous, such that $\forall x \in \mathbb{R}, f(\sin(x)) = f(x)$. Show that f is constant.
- Ex.4.3) (Hard) Let $f : \mathbb{R} \to \mathbb{R}$ be continuous. Assume that we have a polynomial function P such that $\forall x \in \mathbb{R}, P(f(x)) = 0$. Show that f is constant.
- **Ex.4.4**) Find all the functions $f : \mathbb{R} \to \mathbb{R}$ which are :
 - Non-increasing and non-decreasing at the same time,
 - Monotone and periodic.
- Ex.4.5) (Vicious) Let f :)0,1] → R, a non-decreasing function. Assume that there is a constant a, such that 0 < a < 1 and satisfying : ∀x ∈)0,1], f(x) = f(ax). Show that f is constant on)0,1].
 <u>Hint</u>: One could consider f(aⁿx), and for all x ∈)0,1], justify that there exists (at least) one n ∈ N such that aⁿ ≤ x to conclude.
- Ex.4.6) (Hard) Let $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \sin\left(\frac{x}{2}\right) + \cos\left(\frac{x}{3}\right)$. Solve f(x) = -2. Show that f is periodic. Find the *smalles* possible period of f.

Mahindra École Centrale, 2014