Remark 1. This document have to be proofread!

1 Problem on Convexity.

We need interesting problem here!

- Ex.1.1) (Hard) Let $f:[0,1] \rightarrow \mathbb{R}$ be continuous and twice differentiable on $(0,1)$.

Prove that if $f^{\prime \prime}(x) \geqslant 0$ for every $x \in(0,1)$, then f is convex.

- Ex.1.2) Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous and differentiable on (a, b).

Prove that if $f^{\prime}(x) \geqslant 0$ for every $x \in(a, b)$, then f is non-increasing (ie $\forall x, y \in[a, b], x>y \Longrightarrow f(x) \geqslant f(y))$.
And prove that if $f^{\prime}(x)>0$ for every $x \in(a, b)$, then f is increasing (ie $\forall x, y \in[a, b], x>y \Longrightarrow f(x)>f(y)$).

- Ex.1.3) MORE!
- Ex.1.4) MORE!

2 Problem on Differential Calculus.

- Ex.2.1) (From Satya's suggestion) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for all x and y in \mathbb{R},

$$
|f(x)-f(y)| \leqslant|x-y|^{3} .
$$

Prove that f is a constant function.

- Ex.2.2) (From Satya's suggestion) Show that between any two solutions x_{b} and x_{2} of the equation $\mathrm{e}^{x} \cos (x)=1$ there exists at least one root y of the equation $\mathrm{e}^{x} \sin (x)-1=$ 0 (ie $y \in\left(x_{1}, x_{2}\right)$.
- Ex.2.3) Find all the functions $f: \mathbb{R} \rightarrow \mathbb{R}$ differentiable everywhere on \mathbb{R} such that

$$
\forall x, y \in \mathbb{R}, f(x+y)=f(x)+f(y)
$$

- Ex.2.4) On which domain (of \mathbb{R}), the following functions are continuous and on which domain are they differentiable?
a) $f_{1}: x \mapsto x|x|$
b) $f_{2}: x \mapsto \frac{x}{|x|+1}$.
- Ex.2.5) Study the differentiability of these functions:

$$
\text { a) } g_{1}: x \mapsto \sqrt{x^{2}-x^{3}} \quad \text { b) } g_{2}: x \mapsto\left(x^{2}-1\right) \arccos \left(x^{2}\right) .
$$

- Ex.2.6) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function, differentiable at the point $a \in \mathbb{R}$. Study

$$
\lim _{x \rightarrow a} \frac{x f(a)-a f(x)}{x-a} .
$$

- Ex.2.7) (Hard) Let $f:[a, b] \rightarrow \mathbb{R}$ differentiable, which satisfy

$$
f(a)=f(b)=0 \text { and } f^{\prime}(a)>0, f^{\prime}(b)>0
$$

Prove that there exists $c_{1}, c_{2}, c_{3} \in(a, b)$ such that $c_{1}<c_{2}<c_{3}$ and

$$
f^{\prime}\left(c_{1}\right)=f\left(c_{2}\right)=f^{\prime}\left(c_{3}\right)=0
$$

One could think of using the intermediate value theorem, and the Rolle's theorem.

- Ex.2.8) Domain of definition and domain of differentiability of the function $x \mapsto \ln (x+1+$ $\left.x^{2}\right) ?$
- Ex.2.9) Bound the error when we approximate $\sqrt{10001}$ by 100 .

Hint: one could think of using Taylor expansion of order 1 at the point $x=0$, also called a linearisation, for the function $f: x \rightarrow \sqrt{10000} \sqrt{1+x}$, by observing that $x=1 / 10000$ is small regarding to 1 , so close to 0 .

3 Problem on Integration.

- Ex.3.1) (Require integration by part) Let $I_{n}=\int_{0}^{\pi / 2} \cos ^{n}(t) \mathrm{d} t$. Compute I_{0}, et I_{1}.

Show that for all $n \geqslant 2, I_{n}=I_{n-2}$.
Conclude that the sequence $\left.u=\left(u_{n}\right)_{n \in \mathbb{N}}=(n+1) I_{n} I_{n+1}\right)_{n \geqslant 0}$ is constant.

- Ex.3.2) (Hard) Domain of definition, domain of differentiability and derivative of the function $f: x \mapsto f(x)=\int_{x}^{x^{2}} \frac{\mathrm{e}^{-t^{2}}}{1+t} \mathrm{~d} t$.
- Ex.3.3) Let f be a continuous function on [0, 1], satisfying $\int_{0}^{1} f(t) \mathrm{d} t=\frac{1}{2}$.

Show the existence of a $c \in[0,1]$ such that $f(c)=c$.

Hint: What can you say about a continuous function which does not cancel on $[0,1]$? Study $\int_{0}^{1}(f(t)-t) \mathrm{d} t$ to conclude.

- Ex.3.4) Show that $\int_{0}^{\frac{\pi}{2}} \frac{\sin (x)}{x} \mathrm{~d} x \geqslant \int_{0}^{\frac{\pi}{2}} \frac{\sin (x)}{x} \mathrm{~d} x$.
- Ex.3.5) By using simple Riemann sums, compute $\int_{0}^{1} x^{2} \mathrm{~d} x$.

Hint: Remind that $\sum_{1}^{n} k^{2}=\frac{n(n+1)(n+2)}{6}$ is true for any $n \in \mathbb{N}$ (bonus point of you can explain how to prove this formula!).

- Ex.3.6) MORE!

4 Problem on Special Functions.

- Ex.4.1) For $a, b, c \in \mathbb{R}$, which of the following relationships are true?

1) $\left(a^{b}\right)^{c}=a^{b c}$
2) $a^{b} a^{c}=a^{b c}$
3) $a^{2 b}=\left(a^{b}\right)^{2}$
4) $\left(a^{b}\right)^{c}=a^{\left(b^{c}\right)}$
5) $(a b)^{c}=a^{c / 2} b^{c / 2}$
6) $\left(a^{b}\right)^{c}=\left(a^{c}\right)^{b}$

- Ex.4.2) (Hard) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous, such that $\forall x \in \mathbb{R}, f(\sin (x))=f(x)$.

Show that f is constant.

- Ex.4.3) (Hard) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous. Assume that we have a polynomial function P such that $\forall x \in \mathbb{R}, P(f(x))=0$.
Show that f is constant.
- Ex.4.4) Find all the functions $f: \mathbb{R} \rightarrow \mathbb{R}$ which are:
- Non-increasing and non-decreasing at the same time,
- Monotone and periodic.
- Ex.4.5) (Vicious) Let $f:) 0,1] \rightarrow \mathbb{R}$, a non-decreasing function. Assume that there is a constant a, such that $0<a<1$ and satisfying : $\forall x \in) 0,1], f(x)=f(a x)$. Show that f is constant on 0,1$]$.
Hint : One could consider $f\left(a^{n} x\right)$, and for all $\left.\left.x \in\right) 0,1\right]$, justify that there exists (at least) one $n \in \mathbb{N}$ such that $a^{n} \leqslant x$ to conclude.
- Ex.4.6) (Hard) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=\sin \left(\frac{x}{2}\right)+\cos \left(\frac{x}{3}\right)$. Solve $f(x)=-2$. Show that f is periodic.
Find the smalles possible period of f.

