1. Let \mathbb{R} be the set of real numbers and $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for all x and y in \mathbb{R}

$$
|f(x)-f(y)| \leq|x-y|^{3} .
$$

Prove that $f(x)$ is a constant function.
2. For all x in \mathbb{R}, show that between any two roots of $e^{x} \cos x=1$ there exists at least one root of $e^{x} \sin x-1=0$.

