Problem: Fill in the blanks.
Theorem: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ de a differential function and f has a local minimum at $x \in \mathbb{R}$. Then $f^{\prime}(x)=$ \qquad and $f^{\prime \prime}(x)$ \qquad —.

Proof: We will follow the follwing steps.

- Since x is a local minimum there exists a \qquad number $\delta \in \mathbb{R}$ such that

$$
\begin{equation*}
f(x) \leq f(x+h), \quad h \in(\square), \tag{1}
\end{equation*}
$$

- Hence, it follows from (1) that

$$
\begin{array}{ll}
\frac{f(x+h)-f(x)}{h} \geq 0, & h \in(0, \\
\frac{f(x+h)-f(x)}{h} \leq 0, & h \in(\square, 0)
\end{array}
$$

- Now, (2) and (3) imply that

$$
\begin{align*}
& \lim _{h \rightarrow 0^{+}} \frac{f(x+h)-f(x)}{h}=0 \tag{4}\\
& \lim _{h \rightarrow 0^{-}} \frac{f(x+h)-f(x)}{h}=0 \tag{5}
\end{align*}
$$

- Now, since f is differentiable everywhere in \mathbb{R} it follows from (4) and (5) that

$$
\begin{equation*}
\lim _{h \rightarrow 0^{-}} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0^{+}} \frac{f(x+h)-f(x)}{h}=0, \tag{6}
\end{equation*}
$$

which further implies that $f^{\prime \prime}(x)$ \qquad .

