Problem 1

Remark: For this problem, you can admit and use the result of one question in the next questions (e.g. A. 2 and A. 3 can be used for A.4), but not in the other sense: do not use question A. 4 to prove question A. 3 .

The problem is long, and some questions (at the end) are hard, but most of the questions can be done easily, by following step by step the hints.

$$
\text { This problem is about the sum } z(2)=\lim _{n \rightarrow+\infty}\left(1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\cdots+\frac{1}{n^{2}}\right)
$$

Part A:Convergence of the sequence $S(p)$

Let $S_{n}(p)=\sum_{k=1}^{n} \frac{1}{k^{p}}=\sum_{k=1}^{n}\left(\frac{1}{k}\right)^{p}$, where $p, n \in \mathbb{N}^{*}$ (two positive integers).
Qu.A.1) Let $k \geqslant 1$. Quickly justify why the function $f: x \mapsto \frac{1}{x^{p}}$ is decreasing on the interval $[k, k+1]$ ($p \geqslant 1$ can help you). Then use the Min-Max inequality for the monotonic function f on $[k, k+1]$ to prove that:

$$
\frac{1}{(k+1)^{p}} \leqslant \int_{k}^{k+1} \frac{1}{x^{p}} \mathrm{~d} x \leqslant \frac{1}{k^{p}}
$$

Qu.A.2) By using the previous question, the definition of that sum $S_{n}(p)$, and the additivity of the integral on intervals, show that:

$$
\forall n \geqslant 2, \quad S_{n}(p)-1 \leqslant \int_{1}^{n} \frac{1}{x^{p}} \mathrm{~d} x \leqslant S_{n-1}(p)
$$

Qu.A.3) By computing $\int_{1}^{A} \frac{1}{x^{p}} \mathrm{~d} x$ (for some real number $A>1$), and trying to find its limit for $A \rightarrow+\infty$, prove that the function $x \mapsto \frac{1}{x^{p}}$ is integrable on $[1,+\infty$) if and only if $p \geqslant 2$ (ie. Riemann integrable iff $p \geqslant 2$).

Qu.A.4) Thanks to the two previous questions (A.2 and A.3), and the squeezing theorem, conclude that the sequence $S(p)=\left(S_{n}(p)\right)_{n \in \mathbb{N}^{*}}$ is convergent ${ }^{1}$ if and only if $p \geqslant 2$.

From now on, thanks to the A.4, we can define the function z by $z(p)=\lim _{n \rightarrow+\infty} S_{n}(p)$ for every $p \geqslant 2$.

Part B: Calculus of $z(2)=\lim _{n \rightarrow+\infty}\left(1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\cdots+\frac{1}{n^{2}}\right)$
We now define two more functions h and φ_{0} :

- the function h is defined on \mathbb{R}, by $h(t)=\frac{t^{2}}{2 \pi}-t($ for $t \in \mathbb{R})$,
- and the function φ_{0} is defined on $[0, \pi]$, by $\varphi_{0}(t)=\frac{h(t)}{2 \sin \left(\frac{t}{2}\right)}($ for $t \in(0, \pi])$ and $\varphi_{0}(0)=-1$.

[^0]Qu.B.1) Justify that φ_{0} is continuous on $[0, \pi]$, differentiable on $[0, \pi]$, and of derivative φ_{0}^{\prime} continuous on $[0, \pi]$ (ie, of class \mathcal{C}^{1} from $[0, \pi]$ to \mathbb{R}).
Hint: Be cautious of what is going on at the limits of that interval (ie. the points 0 and π).
Qu.B.2) Let $k \in \mathbb{N}^{*}$. Thanks to two successive integrations by parts, show that

$$
\int_{0}^{\pi} h(t) \cos (k t) \mathrm{d} t=-\frac{1}{k} \int_{0}^{\pi}\left(\frac{t}{\pi}-1\right) \sin (k t) \mathrm{d} t=\frac{1}{k^{2}}
$$

Hint: For the first step, writing $f^{\prime}(t)=\cos (k t)$ and $g(t)=h(t)$ is interesting.
For the second step, writing $f^{\prime}(t)=\sin (k t)$ and $g(t)=\left(\frac{t}{\pi}-1\right)$ is also interesting.
Qu.B.3) This question is subdivided in intermediate steps:
Qu.B.3.a) Prove that $\sum_{k=1}^{n} \cos (k t)=\frac{1}{2}\left(\frac{\mathrm{e}^{i(n+1) t}-1}{\mathrm{e}^{i t}-1}+\frac{\mathrm{e}^{-i(n+1) t}-1}{\mathrm{e}^{-i t}-1}\right)$ for all $t \in(0, \pi]$.
Hint: You can follow this way: first use Euler's identity (for cos) to write $\cos (k t)$ as $\frac{\mathrm{e}^{i k t}+\mathrm{e}^{-i k t}}{2}$, then write this sum as half of two sums, and finally use twice the formula for a sum of a geometrical progression to conclude the computation.
Qu.B.3.b) Then prove that $\frac{1}{2}\left(\frac{\mathrm{e}^{i(n+1) t}-\mathrm{e}^{i n t}}{\mathrm{e}^{i t}-1}\right)=\frac{\sin \left(\left(n+\frac{1}{2}\right) t\right)}{2 \sin \left(\frac{t}{2}\right)}$ for all $t \in(0, \pi]$, thanks to Euler's identity for \sin.
Qu.B.3.c) Then, use both B.3.a) and B.3.b) to find a constant $\lambda \in \mathbb{R}$ so that:

$$
\forall t \in(0, \pi], \quad \sum_{k=1}^{n} \cos (k t)=\frac{\sin \left(\left(n+\frac{1}{2}\right) t\right)}{2 \sin \left(\frac{t}{2}\right)}-\lambda
$$

Can you give a numerical approximation of that constant λ ? Is it positive?
Qu.B.4) Let φ be a function of class $\mathcal{C}^{1}\left(\right.$ ie $\left.\varphi \in \mathcal{C}^{1}([0, \pi], \mathbb{R})\right)$.
By an integration by parts, prove that result ${ }^{2}$.

$$
\lim _{n \rightarrow+\infty}\left(\int_{0}^{\pi} \varphi(t) \sin \left(\left(n+\frac{1}{2}\right) t\right) \mathrm{d} t\right)=0
$$

Qu.B.5) (Harder) Use the definition of $z(2)$, the two results of B. 2 and B.3.c, and then take the limit by using B. 4 in order to finally prove that $z(2)=\frac{\pi^{2}}{6}$.
Qu.B.6) Give a numerical approximation of that final value $z(2)$.
Is it bigger than 1? Bigger than 2? Smaller than 5?
Qu.B.7) Bonus: (+1 mark) Can you guess if this number $z(2)$ is rational or irrational?

[^1]
[^0]: ${ }^{1}$ Remember that we say that a sequence $u=\left(u_{n}\right)_{n \in \mathbb{N} *}$ is convergent if it has a finite limit when $n \rightarrow+\infty$.

[^1]: ${ }^{2}$ This is very similar to a result called LEBESGUE's lemma, as seen in the Exercise 2.3 tutorial sheet on integration by parts, on the Integration Methods chapter...

