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a b s t r a c t

The analytic signal (AS) was proposed by Gabor as a complex signal corresponding to a

given real signal. The AS has a one-sided spectrum and gives rise to meaningful spectral

averages. The Hilbert transform (HT) is a key component in Gabor's AS construction. We

generalize the construction methodology by employing the fractional Hilbert transform

(FrHT), without going through the standard fractional Fourier transform (FrFT) route. We

discuss some properties of the fractional Hilbert operator and show how decomposition of

the operator in terms of the identity and the standard Hilbert operators enables the

construction of a family of analytic signals. We show that these analytic signals also satisfy

Bedrosian-type properties and that their time–frequency localization properties are

unaltered. We also propose a generalized-phase AS (GPAS) using a generalized-phase

Hilbert transform (GPHT). We show that the GPHT shares many properties of the FrHT, in

particular, selective highlighting of singularities, and a connection with Lie groups. We

also investigate the duality between analyticity and causality concepts to arrive at a

representation of causal signals in terms of the FrHT and GPHT. On the application front,

we develop a secure multi-key single-sideband (SSB) modulation scheme and analyze its

performance in noise and sensitivity to security key perturbations.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The analytic signal formalism proposed by Gabor [1] is a

methodology for constructing a unique complex signal asso-

ciated with a given real signal. The complex signal is derived

by adding the real signal in quadrature with its Hilbert

transform. As a consequence of this construction, the spectrum

vanishes for negative frequencies. The amplitude-modulation

(AM) and phase-modulation (PM) of an AM–frequency-

modulated (AM–FM) signal are defined as the modulus and

phase of the AS, respectively [2–5]. The AS allows for mean-

ingful computations of the mean frequency and bandwidth,

which are crucial in computing the time-bandwidth product

and in determining the time–frequency localization properties

governed by Heisenberg's uncertainty principle. The analytic

nature of the signal can be retained while allowing for specific

properties on the AM, FM, or PM. For example, to have a

nonnegative FM, finite Blaschke products (which are essen-

tially time-domain duals of allpass filters that signal processing

community is more familiar with) have been considered by

Picinbono [6], Kumaresan–Rao [7], and Doroslovački [8], which

were further extended to an infinite product by Dang and Qian

[9], who provided a systematic study of minimum-phase and

allpass factorization of analytic signals. Specific results in the

context of analytic representations with bandlimited AM have

been derived by Xia et al. [10] and Deng and Qian [11].

Another class of generalizations concerning the analytic signal

representation are given in terms of employing FrFT, which are

reviewed in Section 1.1.

In this paper, we develop a generalization of Gabor's

construction using the FrHT without using the FrFT. We
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also propose another generalization of our method, which

relies on a functional extension of the HT.

1.1. Review of related work

One of the early works in connection with FrHTs is that

of Lohmann et al. [12], who proposed two fractional

generalizations of the classical HT. They proposed optical

implementations of the FrHT using spatial filtering. One of

the generalizations is based on a modification of the

spatial filter using a fractional parameter, and the other

one is based on the FrFT [13,14]. They also provided a

unified definition resulting from a combination of the

spatial filter and FrFT approaches. Davis et al. [15] employed

the FrHT of Lohmann et al. for edge detection and showed that

as the fractional order is varied, one can obtain different

qualities of edge enhancement and also achieve selective

highlighting of rising or falling edges. Pei and Yeh [16] also

deployed the FrHT for similar applications based on a discrete

counterpart of the FrHT. Zayed [17] took the AS formalism

associated with the standard Fourier transform (FT) and

provided a counterpart of it for the FrFT. This procedure is

anchored on the FrFT and requires a generalization of the HT,

which is obtained by multiplying the time-domain function

with a chirp, passing the product through the standard HT,

and then dechirping the output to obtain the corresponding

AS. Tseng and Pei [18] considered optimized design strategies

for finite impulse response (FIR) designs and infinite impulse

response (IIR) models of the discrete-time FrHT, and proposed

a novel secure SSB communication application using the angle

of the FrHT as a secure key. An interesting aspect of their

design is that since the FrHT is an allpass filter, much like the

HT, rational allpass filter forms are used to approximate the

FrHT. Pei andWang proposed the design of discrete FrHT using

maximally flat FIR filters whose impulse responses were

obtained in simple analytical form, and devised efficient

hardware realizations for both odd and even order filters

[19]. Cusmariu proposed three extensions of Gabor's AS using

the FrHT, called fractional analytic signals, which reduce to

Gabor's AS when the FrHT angle is set to π=2 [20]. The first

fractional AS definition is based on a rotation of Gabor's AS, the

second is obtained by using the FrHT as the imaginary part,

and the third is obtained as a weighted linear combination of

the signal and its standard HT. In particular, it was shown in

this work that the FrHT has the semi-group property, unlike

the GHT proposed by Zayed. However, fractional analytic

signals do not always have a one-sided spectrum. Tao et al.

[21] pursued a similar philosophy as that of Zayed and

proposed an analytic counterpart associated with the FrFT in

conjunction with the FrHT, using time-domain chirping,

standard HT, and dechirping. The fundamental issue addressed

by Tao et al. is that since the FrFT does not exhibit conjugate

symmetry, suppressing the negative part of the frequency

spectrum requires some care; otherwise, one may not be able

to recover the real signal from the analytic counterpart [21].

On the application front, they proposed a SSB modulation

scheme, which uses the angle of the FrFT and the phase of the

FrHT as secret keys for demodulation. Fu and Li proposed a

generalization of the AS through the linear canonical trans-

form (LCT) domain [22]. Their formalism is based on the

parameterized HT, which includes the FrFT-based HT [17] as a

special case, and the LCT-based generalized AS is obtained by

taking the inverse-LCT after suppressing its negative frequency

spectrum. A generalized Bedrosian theorem associated with

the LCT was also proposed by Fu and Li. Guanlei et al. [23]

proposed different definitions of two-dimensional HT in the

LCT domain and discussed different properties, with particular

emphasis on the relation between the time-domain and

transformed domain mappings. Sarkar et al. proposed a

generalization of the HT based on the generalization of decay

of the impulse response of the standard HT kernel and applied

it for symbolic time series analysis of noise-corrupted dyna-

mical systems [24]. They also proposed an AS counterpart

using the generalized HT, which results in functions with one-

sided spectra only for certain values of the decay parameter.

An all-optical implementation of the FrHT using a phase-

shifted fiber Bragg grating was proposed by Ge et al. [25],

capable of operating on input waveforms with bandwidths up

to hundreds of Gigahertz. Chaudhury et al. [26] deployed the

FrHT in the representation of the dual-tree complex wavelet

transforms based on the shifting action of the FrHT operator.

They also introduced a generalization of the Bedrosian identity

for the FrHT, and extended the concepts to the multidimen-

sional setting by proposing a directional FrHT.

1.2. This paper

In this paper, we address the aspect of AS construction

starting with the FrHT, but by employing the standard FT

and without taking the FrFT route. In fact, it turns out that

the properties of the spectra associated with FrHT opera-

tors and the approach presented in this paper do not

necessitate the use of FrFT. We recall some properties of

the FrHT vis-a-vis those of the HT. We show how our

framework leads to the generation of a family of analytic

signals, one corresponding to every value of the phase

parameter of the FrHT. We show that the FrHT approach

for AS construction enables a natural geometric interpre-

tation. We carry out the analytical developments and

construction of a generalization of the AS in the contin-

uous-domain, which we refer to as the ϕ�AS, for which we

favor a Hilbert space formalism and work with suitably

defined operators. We also seek to analyze some specific

properties of the ϕ�AS, namely, AM/FM separation, opera-

tor invariances, factorization properties, energy preserva-

tion, temporal and spectral moments, and the associated

Heisenberg uncertainty principle. We also propose a new

member to the family of Hilbert transforms, called the

generalized-phase Hilbert transform (GPHT), which is

based on a functional generalization of the FrHT phase.

We show that the properties of the FrHT, in particular, the

enhancement and selective highlighting of edges, are

preserved in the process of generalization. A connection

between Lie groups and the GPHT is also presented. The

GPHT is then used to construct a generalized ϕ�AS

construction, called the generalized-phase analytic signal.

We show that the GPAS is related to Gabor's AS by a linear

filtering operation. By analyzing the link between causality

and analyticity, we show how causal signals can be

characterized using the FrHT/GPHT. As an application of

the developed concepts, we propose a multi-key secure

A. Venkitaraman, C.S. Seelamantula / Signal Processing 94 (2014) 359–372360



SSB scheme and demonstrate its robustness to SSB-key

perturbations and additive noise.

In Section 2, we propose a construction of ϕ�AS. We

discuss some properties of the ϕ�AS in Section 3. The

GPHT is proposed in Section 4. In Section 5, we propose an

extension to the ϕ�AS using the GPHT. In Section 6, we

show how causal signals can also be characterized using

the FrHT/GPHT. In Section 7, we propose a secure SSB

scheme using the GPHT proposed in Section 4.

1.3. Notations

The symbols 〈�; �〉 and ∥ � ∥ denote the L2 inner-product

and norm, respectively. We use f̂ ðωÞ to denote the FT of the

function f(t), F to denote the Fourier operator, H for the

Hilbert operator, and ~f ðtÞ to denote the HT of f(t). There-

fore, f̂ ðωÞ ¼F ff gðωÞ, and ~f ðtÞ ¼Hff gðtÞ. The symbol Hϕ

denotes the fractional Hilbert operator, and n denotes the

convolution operator. We use Sτ and Ds to denote the shift

and dilation operators, respectively: Sτff gðtÞ ¼ f ðt−τÞ, and
Dsff gðtÞ ¼ f ðt=sÞ.

2. The ϕ�analytic signal

2.1. Gabor's analytic signal

Consider a real-valued function f(t), and its HT defined

by

~f ðtÞ ¼Hff gðtÞ ¼ p:v:
1

π

Z þ∞

−∞

f ðτÞ
t−τ

dτ¼ ðhnf ÞðtÞ;

where hðtÞ ¼ 1=πt is the Hilbert convolutional kernel and p.

v. denotes the Cauchy principal value integral. The adjoint

operator of H is given by H† ¼ −H. The FT of h(t) is

specified in a distributional sense as ĥðωÞ ¼−j signðωÞ,
where j¼

ffiffiffiffiffiffiffi

−1
p

and signð�Þ denotes the signum function.

In the Fourier domain, we have the expression:
~̂f ðωÞ ¼ ĥðωÞf̂ ðωÞ ¼ −j signðωÞf̂ ðωÞ. Let f aðtÞ denote the AS of

f(t) constructed by adding f in quadrature with ~f as

follows: f
aðtÞ ¼ f ðtÞ þ j~f ðtÞ. f(t) can be obtained from f

aðtÞ
as f ðtÞ ¼ Realff aðtÞg. In the frequency domain, the AS has

the equivalent representation:

f̂
a
ðωÞ ¼ ð1þ signðωÞÞf̂ ðωÞ ¼ 2f̂ ðωÞUðωÞ; ð1Þ

where Uð�Þ denotes the unit-step function. The AS operator

denoted by A can be represented as

A¼ I þ jH; ð2Þ

where I denotes the identity operator. Using this notation,

f
aðtÞ ¼Aff gðtÞ. We observe from (1) that the AS has a one-

sided spectrum.

2.2. Fractional Hilbert operator

The fractional Hilbert kernel hϕðtÞ corresponding to the

FrHT operator Hϕ is specified in the Fourier domain as

follows:

ĥϕðωÞ ¼ e−jϕ signðωÞ ¼ e−jϕUðωÞ þ ejϕUð−ωÞ; ð3Þ

where −π=2≤ϕ≤π=2. Correspondingly, the fractional Hil-

bert operator Hϕ can be expressed as a linear combination

of the identity and standard Hilbert operators [12,15,26]:

Hϕ ¼ cos ϕI þ sin ϕH: ð4Þ

For ϕ¼ π=2, the fractional Hilbert operator coincides with

the standard Hilbert operator: Hπ=2 ¼H. On the other

hand, for ϕ¼ 0, Hϕ reduces to the identity operator. The

adjoint operator is given by H
†
ϕ ¼H−ϕ, such that H†

ϕHϕ ¼
H−ϕHϕ ¼ I .

The fractional Hilbert transform of f(t) is obtained as

~f ϕðtÞ ¼Hϕff gðtÞ ¼ cos ϕf ðtÞ þ sin ϕHff gðtÞ

¼ cos ϕf ðtÞ þ p: v:

Z

−∞

þ∞
sin ϕ

πðt−τÞ f ðτÞ dτ¼ ðhϕnf ÞðtÞ;

where hϕðtÞ ¼F−1fĥϕðωÞg ¼ cos ϕδðtÞ þ sin ϕ1=πt is the

fractional Hilbert kernel.

2.3. Properties of the fractional Hilbert operator

(P1) Linearity:

Hϕfα1f 1 þ α2f 2gðtÞ ¼ α1Hϕff 1gðtÞ þ α2Hϕff 2gðtÞ, for α1

and α2 in the complex field C.

(P2) Shift-invariance: SτHϕff gðtÞ ¼HϕSτff gðtÞ, for τ∈R.
(P3) Scale-invariance: DsHϕff gðtÞ ¼HϕDsff gðtÞ, for s∈Rþ.

(P4) Orthogonality: If f ; g∈L2ðRÞ such that f⊥g, that is,

〈f ; g〉¼ 0, then 〈~f ϕ; ~gϕ〉¼ 0.

(P5) Linear independence: If ff iðtÞg
N
i ¼ 1 constitutes a set of

linearly independent functions, so does fHϕff ig
ðtÞgNi ¼ 1.

Properties (P1), (P2), and (P3) follow from the linearity,

shift-invariance, and scale-invariance, respectively, of H

and Hϕ. The property (P4) may be proved by considering

the inner product of ~f ϕ and ~gϕ:

〈~f ϕ; ~gϕ〉¼ 〈Hϕff g;Hϕfgg〉¼ 〈f ;H†
ϕHϕfgg〉¼ 〈f ; g〉¼ 0:

The proof of (P5) follows directly from the definition of

linear independence and the linearity of Hϕ. The property

(P5) enables one to generate a new set of bases starting

from a given set of linearly independent functions, and in

particular has been applied to the construction of wavelet

bases [26,27].

2.4. Construction of the ϕ�analytic signal

Let us construct a complex signal operator Aϕ such that

Aϕ ¼ I þ ejðπ−ϕÞHϕ; ð5Þ

and let f
a
ϕðtÞ ¼Aϕff gðtÞ ¼ f ðtÞ þ ejðπ−ϕÞHϕ f

� �

ðtÞ. In the fre-

quency domain, we get that

^f
a
ϕ ðωÞ ¼ f̂ ðωÞ þ ejðπ−ϕÞ ~̂f ϕðωÞ ¼ f̂ ðωÞ þ ejðπ−ϕÞĥϕðωÞf̂ ðωÞ

¼ ð1−e−2jϕÞf̂ ðωÞUðωÞ ¼ 2 sin ϕejðπ=2−ϕÞ f̂ ðωÞUðωÞ; ð6Þ

which vanishes for ωo0. Therefore, f
a
ϕðtÞ is analytic.

Taking the inverse FT of f̂
a

ϕðωÞ gives

f
a
ϕðtÞ ¼ 2 sin ϕejðπ=2−ϕÞ

1

2π

Z ∞

0

f̂ ðωÞejωt dω

¼ sin ϕejðπ=2−ϕÞf
aðtÞ: ð7Þ
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We observe that Gabor's AS f
aðtÞ, and the generalized AS

f
a
ϕðtÞ, are related by a complex scaling constant that

depends on the FrHT parameter ϕ. Thus, f aϕðtÞ represents
a family of analytic signals characterized by the parameter

ϕ. We shall refer to f
a
ϕðtÞ as the ϕ�analytic signal (ϕ�AS).

Using (7), f(t) is obtained from f
a
ϕðtÞ as f ðtÞ ¼ cosec ϕ

e−jðπ=2−ϕÞRealff aϕðtÞg. In Fig. 1(a) and (b), we provide a

comparison of the construction of Gabor's AS and the

ϕ�AS, respectively.

2.5. Geometric interpretation of the ϕ�AS construction

We next provide a geometric interpretation of the AS

construction by treating functions as vectors. Using FTs, it

can be shown that a function and its HT are orthogonal,

that is, 〈f ; ~f 〉¼ 0. The AS f
aðtÞ ¼ f ðtÞ þ j~f ðtÞ is a linear

combination of f(t) and ~f ðtÞ, which are mutually orthogo-

nal. This representation is shown pictorially in Fig. 2(a).

Consider next the expansion of f aðtÞ over f(t) and ~f ϕðtÞ:

f
aðtÞ ¼ β1f ðtÞ þ β2

~f ϕðtÞ:

A function and its fractional Hilbert transform are, in

general, not orthogonal. Hence, β1 and β2 cannot be

directly obtained by considering projections of f
aðtÞ onto

f(t) and ~f ϕðtÞ. To compute β1 and β2, we use the following

equality derived from (4):

~f ϕðtÞ ¼ f ðtÞ cos ϕþ ~f ðtÞ sin ϕ: ð8Þ

Substituting (8) in f
aðtÞ ¼ f ðtÞ þ j~f ðtÞ gives

f
aðtÞ ¼ f ðtÞ þ j

1

sin ϕ
ð~f ϕðtÞ−f ðtÞ cos ϕÞ

¼ 1þ j
cos ϕ

sin ϕ

� �

f ðtÞ þ j

sin ϕ

� �

~f ϕðtÞ ¼ β1f ðtÞ þ β2
~f ϕðtÞ;

where β1 ¼ cosec ϕejðϕ−π=2Þ and β2 ¼ cosec ϕejπ=2. The

construction of the ϕ�AS is illustrated geometrically in

Fig. 2(b). We observe that f
aðtÞ can also be constructed

from f(t) and ~f ϕðtÞ.

3. Properties of the ϕ�analytic signal

3.1. Invariances

(I1) Linearity:

Aϕfα1f 1 þ α2f 2gðtÞ ¼ α1Aϕff 1gðtÞ þ α2Aϕff 2gðtÞ, for com-

plex scalars α1 and α2.

(I2) Shift-invariance: SτAϕff gðtÞ ¼AϕSτff gðtÞ, for τ∈R.
(I3) Scale-invariance: DsAϕff gðtÞ ¼AϕDsff gðtÞ, for s∈Rþ.

The proofs follow from the corresponding invariances of

the fractional Hilbert operator Hϕ, and from the definition

of Aϕ given in (5).

3.2. Factorization

Let us analyze the action of the ϕ�AS operator Aϕ, on

the product of two signals f 1; f 2∈L
2ðRÞ, where f̂ 1ðωÞ

vanishes for jωj≥ω0 and f̂ 2ðωÞ vanishes for jωjoω0. It has

been shown in [26] that, under these conditions, Hϕ

satisfies the generalized Bedrosian identity [26,28]:

Hϕff 1:f 2gðtÞ ¼ f 1ðtÞHϕff 2gðtÞ: ð9Þ

The generalized AS of f 1ðtÞf 2ðtÞ is given by

Aϕff 1:f 2gðtÞ ¼ f 1ðtÞf 2ðtÞ þ ejðπ−ϕÞHϕff 1f 2gðtÞ
¼ f 1ðtÞðf 2ðtÞ þ ejðπ−ϕÞHϕff 2gðtÞÞ ¼ f 1ðtÞAϕff 2gðtÞ; ð10Þ

where the second equality follows from (9). Thus, the

ϕ�AS of a product of two signals with disjoint spectra is

equal to the product of the low-frequency signal and the

ϕ�AS of the high-frequency signal. We next consider an

example illustrating this property.

Fig. 1. Comparison of complex signal construction approaches: (a) Gabor's AS construction, and (b) ϕ�AS construction using the FrHT.

Fig. 2. Geometric vector interpretation of ϕ�AS construction: (a) Gabor's AS construction ðϕ¼ π=2Þ, and (b) ϕ�AS construction.
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3.3. AM–FM representation

The AM and PM of an AM–FM signal f(t) are defined as

the modulus and phase angle of f
aðtÞ, respectively, and the

FM is defined as the derivative of the PM [2]. Using (7), we

write that

f
a
ϕðtÞ
�

�

�

�

�

�¼ j sin ϕjjf aðtÞj ¼ j sin ϕjaðtÞ;

θϕðtÞ ¼Δ ∠f
a
ϕðtÞ ¼ θðtÞ þ π

2
−ϕþ π signð sin ϕÞ and

ωϕðtÞ ¼
d

dt
θϕðtÞ ¼ωðtÞ: ð11Þ

We observe from (11) that the modulus of the ϕ�AS is

equal to the AM scaled by a factor j sin ϕj, its phase angle is

equal to the PM offset by π=2−ϕþ π signð sin ϕÞ, and that

the derivative of the phase angle is equal to the FM given

by Gabor's AS.

3.4. Energy scaling

The energy of a real signal f∈L2ðRÞ is given by

Ef ¼ ∥f∥2 ¼ ð1=2πÞ∥f̂ ∥2 (Parseval's theorem). Let the energy

of Gabor's AS f
aðtÞ be denoted by Eaf . Then, the energy of

the ϕ�AS is given by

Eaf ;ϕ ¼ 2 sin 2
ϕEaf ; ð12Þ

which is a constant multiple of the signal energy. Gabor's

AS corresponds to the case ϕ¼ π=2, and hence Eaf ;π=2 ¼ 2Eaf .

For the case ϕ¼ π=4, the energy of the ϕ�AS is given by

Eaf ;π=4 ¼ 2 sin 2ðπ=4ÞEaf ¼ Eaf .

3.5. Temporal and spectral moments

We next compute the spectral moments using the

ϕ�AS spectrum. We assume that, f in addition to being

in L2ðRÞ, also satisfies the following properties:

ð1þ jtjÞn=2f ðtÞ∈L2ðRÞ and ð1þ jωjÞn=2 f̂ ðωÞ∈L2ðRÞ

for n∈N, so that the moments up to order n are well-

defined. The n-th spectral moment of Gabor's AS is given

by

〈ωn〉¼ 1

Eaf

Z

−∞

þ∞

ωn9f̂
a
ðωÞj2 dω¼ 2

Ef

Z

0

þ∞

ωn9f̂ ðωÞ92 dω

and the n-th temporal moment is given by

〈tn〉¼ 1

Eaf

Z

−∞

þ∞

tn9f aðtÞ92 dt:

Let 〈tn〉ϕ and 〈ωn〉ϕ denote the n-th temporal and spectral

moments of the ϕ�AS f
a
ϕðtÞ, respectively. Then, using (1),

(6), and (12), we get that 〈tn〉ϕ ¼ 〈tn〉 and 〈ωn〉ϕ ¼ 〈ωn〉. The

preceding analysis shows that Gabor's AS and the ϕ�AS

have the same temporal and spectral moments. As a result,

both analytic signals have the same time-bandwidth

product and time–frequency localization property is not

compromised on, in the process of generalization.

4. The generalized-phase Hilbert transform

We define the generalized-phase Hilbert transform of f

(t) in the frequency domain as

~̂f gðωÞ ¼ e−jϕðωÞ f̂ ðωÞUðωÞ þ ejϕðωÞ f̂ ðωÞUð−ωÞ:

In the case when ϕðωÞ is a scalar, the GPHT reduces to the

FrHT. Let Hg denote the generalized-phase Hilbert opera-

tor such that ~f gðtÞ ¼Hgff gðtÞ. We observe that the GPHT of f

(t) is expressible in the frequency domain as

~̂f gðωÞ ¼ ĥgðωÞf̂ ðωÞ; ð13Þ

where hgðtÞ ¼F−1fĥgðωÞg ¼F−1fe−j signðωÞϕðωÞg denotes the

convolutional kernel corresponding to the GPHT. Eq. (13)

shows that the GPHT can be expressed as a linear filtering/

convolution operation, that is,

Hgff gðtÞ ¼ ðhgnf ÞðtÞ; ð14Þ

which, in turn implies that Hg is a linear, shift-invariant

operator. However, the GPHT convolutional kernel hg(t) is

not always real-valued, unlike the FrHT kernel; depending

on the nature of the phase kernel ϕðωÞ, the GPHT of a

function may be real or complex. Let ∠ĥgðωÞ denote the

phase angle of ĥgðωÞ. Then, we get that

∠ĥgðωÞ ¼ ϕðωÞUðωÞ−ϕðωÞUðωÞ and

∠ĥgð−ωÞ ¼ ϕð−ωÞUð−ωÞ−ϕð−ωÞUð−ωÞ: ð15Þ

In order that hg(t) be real, its FT should be conjugate-

symmetric, that is, the phase angle of the FT, say θðωÞ,
should be such that θð−ωÞ ¼−θðωÞ [29]. We observe from

(15) that this is true when ϕðωÞ is an even function of ω.

Fig. 3. Template of phase spectrum of GPHT kernel: (a) ϕðωÞ ¼ ϕ0 þ ϕ1ω, and (b) ϕðωÞ ¼ ϕ0 þ ϕ2ω
2 .
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In the particular case when ϕðωÞ is a polynomial, this

requires that ϕðωÞ be a function consisting only of even

powers of ω. In Fig. 3(a) and (b), we show templates of the

phase spectrum for two different GPHT kernels.

In Table 1, we list hg(t) for different types of polynomial-

phase kernels. We observe that hg(t) is non-causal in all the

cases. Although the functional form of hg(t) corresponding

to ϕðωÞ ¼ ϕ0 þ ϕ1ω
2 contains complex-valued terms, it can

be shown that hg(t) is indeed a real-valued function by

using properties of the complex error function Cerfð�Þ [30].
In Fig. 4(a)–(d), we show examples of impulse responses of

linear-phase kernel and quadratic phase-kernel GPHTs. We

observe that in the case when ϕðωÞ ¼ ϕ1ω, the GPHT

convolutional kernel hgðtÞ ¼ ϕ1=πðϕ2
1−t

2Þ has singularities

at t ¼ ϕ1 and t ¼−ϕ1, and it decays as 1=t2, unlike the FrHT

kernel (including the standard HT), which has a singularity

at t¼0 and decays only as 1=t. This, in turn implies that the

GPHT of a function, evaluated using ϕðωÞ ¼ ϕ1ω, exhibits

better decay properties than the corresponding FrHT. In the

case when ϕðωÞ ¼ ϕ2ω
2, however, hg(t) is an oscillating

function, and does not decay with time. In Table 2, we

show hg(t) computed for ϕðωÞ ¼ 0:3ω, and ϕðωÞ ¼ 0:4ω2 and

the corresponding phase spectra. It can be shown that the

GPHT convolutional kernel diverges as jtj tends to infinity

for polynomial-phase kernels of orders larger than 2, and

therefore, we shall not consider them in further analysis.

The adjoint of the operator Hg , which we shall denote by

H
†
g , is expressible as the following convolution operation

〈tn〉ϕ ¼ 〈tn〉 and 〈ωn〉ϕ ¼ 〈ωn〉, where h
−1
g ðtÞ ¼Δ F−1f½ĥgðωÞ�ng ¼

F−1fej signðωÞϕðωÞg, which follows from the observation that

ĥgðωÞðĥgðωÞÞn ¼ 1.

4.1. Properties of the GPHT

(Q1) Hg maps L2ðR) functions to L2ðR).
(Q2) Linearity:

Hgfα1f 1 þ α2f 2gðtÞ ¼ α1Hgff 1gðtÞ þ α2Hgff 2gðtÞ, for α1

and α2 in the complex field C.

(Q3) Shift-invariance: SτHgff gðtÞ ¼HgSτff gðtÞ, for τ∈R.
(Q4) Scale-invariance: DsHgff gðtÞ ¼HgDsff gðtÞ, for s∈Rþ.

(Q5) Orthogonality: If f 1; f 2∈L
2ðRÞ such that 〈f 1; f 2〉¼ 0,

then 〈~f 1g ;
~f 2g〉¼ 0.

(Q6) Linear independence: If ff iðtÞg
N
i ¼ 1 constitutes a set of

linearly independent functions, so does fHgff igðtÞg
N
i ¼ 1.

Property (Q1) can be proved using the convolution prop-

erty of the FT and the identity: ĥgðωÞðĥgðωÞÞn ¼ 1.

Properties (Q2), (Q3), and (Q4) follow from the observation

that the GPHT is associated with a convolutional kernel.

The property (Q5) can be proved by proceeding along the

same lines as in the proof of property (P4) of the FrHT in

Section 2.3.

Proof of (Q6). Let ff iðtÞg
N
i ¼ 1 denote a set of N linearly

independent functions, that is, ∑N
i ¼ 1αif iðtÞ ¼ 0; ∀t⇒αi ¼

0; ∀i. Consider the linear combination:

∑
N

i ¼ 1

βi
~f i;gðtÞ ¼ ∑

N

i ¼ 1

βiHgff igðtÞ ¼ ∑
N

i ¼ 1

Hgfβif iðtÞg

¼Hg ∑
N

i ¼ 1

βif iðtÞ
( )

; ð16Þ

where the last equality follows from the linearity of Hg . If

f iðtÞ≠0; ∀i, the linear combination in (16) equals zero only if

Hgf∑N
i ¼ 1βif iðtÞg ¼ 0; ∀t, which implies βi ¼ 0∀i. This implies

that, similar to the FrHT case, the GPHT can be used to

generate new bases from an existing linearly independent

bases.

4.2. Selective enhancement of singularities

Davis et al. [15] showed that the FrHT can be used for

enhancement and selective highlighting of falling/rising

edges; the selectivity in highlighting one edge over the

other depends on the magnitude and polarity of the FrHT

phase parameter ϕ. We show that a similar property holds

for the GPHT for particular forms of ϕðωÞ. Consider the

symmetric rectangular pulse f ðtÞ ¼ 1½−3;3�. We compute the

GPHT of f(t) corresponding to the phase kernel

ϕðωÞ ¼ ϕ0 þ ϕ1ω. We consider two different cases: (i)

jϕ0j ¼ 0:1, jϕ1j ¼ 0:1, and (ii) jϕ0j ¼ 0:5, jϕ1j ¼ 0:1, that is,

four different combinations of ðϕ0;ϕ1Þ for each case. In

Fig. 5(a)–(e), we show the magnitude of the GPHT of 1½−3;3�
for different cases. We observe that in both cases, different

edges are selected depending on the polarities of ϕ0 and

ϕ1. In the first case, the falling edge is highlighted when

both ϕ0 and ϕ1 have the same polarities, and the rising

edge is highlighted when they have opposite polarities. In

the second case, however, the rising edge is highlighted

when the polarity of ϕ0o0 and the falling edge is high-

lighted in case of ϕ040, irrespective of the polarity of ϕ1.

This shows that the edge highlighting behavior depends

on the relative magnitudes of ϕ0 and ϕ1. For the case when

ϕðωÞ ¼ ϕ2ω
2, hg(t) is an oscillating non-decaying function

and is unsuitable for edge highlighting/enhancement.

Table 1

GPHT convolutional kernels corresponding to polynomial-phase kernels.

ϕðωÞ ~hgðtÞ

ϕ0 cos ϕ0δðtÞ þ sin ϕ0

1

πt
ϕ0 þ ϕ1ω j

2πðϕ2
1−t

2Þ
e−jϕ0 ðϕ1ðe2jϕ0 þ 1Þ þ ðe2jϕ0−1ÞtÞ

ϕ0 þ ϕ2ω
2 1

4
ffiffiffiffiffiffiffiffi

πϕ3
2

q e−jð4ϕ0ϕ2þt2 Þ=4ϕ2
ffiffiffiffiffiffi

ϕ2

p

ð
ffiffiffiffiffiffiffi

jϕ2

p

e2jϕ0 þ
ffiffiffiffiffiffiffiffiffiffi

−jϕ2

p

ejt
2=2ϕ2 Þ

�

þð−1Þ1=4 ϕ2 jejt
2=2ϕ2Cerf

ð−1Þ1=4t
2

ffiffiffiffiffiffi

ϕ2

p

 !

þ e2jϕ0Cerf
ð−1Þ3=4t
2

ffiffiffiffiffiffi

ϕ2

p

 ! !�

�

�

�

�

!�

�

�

�

�
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4.3. GPHT and Lie group connection

Chaudhury and Unser showed that FrHTs form a com-

mutative group [26,33]. In a technical note [34], Chaudh-

ury also gave a Lie group characterization of the notions of

steerability [35] (which is useful for directional image

analysis) and shiftability (which is an important aspect in

complex wavelet design [26]). We next review Lie groups

briefly and show that GPHTs also constitute a Lie group.

A group G is said be a Lie group if the composition

operation G�G and the inversion operation G−1 are

continuous [36]. In particular, consider the group para-

meterized by a scalar parameter ϕ, that is, G¼ ðGϕÞϕ for ϕ

lying on some smooth manifold, such as R. Then, G is said

to be a Lie group if the composition and inversion maps,

represented as ðϕ1;ϕ2Þ-Compðϕ1;ϕ2Þ and ϕ-InvðϕÞ,
respectively, are infinitely differentiable over their respec-

tive parameters, that is, Compðϕ1;ϕ2Þ and InvðϕÞ are

smooth functions of ðϕ1;ϕ2Þ and ϕ, respectively.

Consider the group of GPHTs corresponding to monomial

phase functions, that is, ϕðωÞ ¼ ϕωi. The GPHT of f(t) has the

FT e−jϕω
i signðωÞ f̂ ðωÞ. Let Hg1 and Hg2 denote the GPHT

operators corresponding to ϕ1ðωÞ ¼ ϕ1ω
i and ϕ2ðωÞ ¼ ϕ2ω

i,

respectively. Then, the FT of the composition Hg1Hg2 ff gðtÞ is
given by e−jðϕ1þϕ2Þωi signðωÞ f̂ ðωÞ, which shows that the compo-

sition of Hg1 and Hg2 is equal to the GPHT corresponding to

ϕðωÞ ¼ ðϕ1 þ ϕ2Þωi, that is, Compðϕ1;ϕ2Þ ¼ ϕ1 þ ϕ2. The

operator H†
g , which is the inverse of Hg , corresponds to GPHT

with ϕðωÞ ¼ ð−ϕÞωi, that is, InvðϕÞ ¼ −ϕ. Thus, both composi-

tion and inversion maps are infinitely differentiable, and

hence, the GPHTs corresponding to monomial phase functions

form a Lie group, which is a superset of the Lie group of FrHTs.

The generator G of a Lie group ðGϕÞ is defined as [36]

Gff g ¼Δ d

dϕ
Gϕff g

�

�

�

�

�

ϕ ¼ 0; ϕ∈R;

where the domain of G is the space of square-integrable

functions. Then, the Lie group ðGϕÞ can be characterized

using G as follows:

Gϕf ¼ eϕGf where eϕG ¼ I þ ϕGþ 1

2!
ϕ2G

2 þ⋯:

The generator of the Lie group constituted by GPHTs has

the following frequency-domain manifestation:

Gff̂ gðωÞ ¼ d

dϕ
Hgff̂ gðωÞ

�

�

�

�

�

ϕ ¼ 0 ¼
d

dϕ
ðe−jϕωi signðωÞ f̂ ðωÞÞ

�

�

�

�

�

ϕ ¼ 0

¼−jωi signðωÞf̂ ðωÞ ¼ωi ~̂f ðωÞ:

Using the differentiation property of the Fourier trans-

form, we get that G has the following time-domain

Fig. 4. GPHT impulse responses and phase spectra. (a) The imaginary part of hg(t) for ϕðωÞ ¼ 0:3ω (the real part is zero) and (b) the corresponding phase

response; (c) the real part of hg(t) for ϕðωÞ ¼ 0:4ω2 (the imaginary part is zero) and (d) the corresponding phase response.

Table 2

GPHT convolutional kernels computed for particular values of ϕ0 , ϕ1 , and

ϕ2 .

ϕðωÞ ~hgðtÞ

0.1
0:995δðtÞ þ 0:09

1

πt
0:3ω 9:5493j

100t2−0:9
0:4ω2 Realfð−0:157−j0:157Þe−j0:625t2Cerfðð0:559−j0:559ÞtÞg
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description:

Gff gðtÞ ¼ ð−jÞi d
i

dti
Hff gðtÞ:

The exponentiation of G is given by

eϕGff̂ gðωÞ ¼ ejϕω
i signðωÞ f̂ ðωÞ ¼F fHgff ggðωÞ ¼HgfF ff ggðωÞ;

which shows that the group of GPHTs is obtained by

exponentiation of the generator G. Though we have

considered only monomial phase functions, the analysis

may be suitably extended to other polynomial phase

functions.

5. The generalized-phase analytic signal

We next construct a function f̂
a

gðωÞ in the frequency

domain as follows:

f̂
a

gðωÞ ¼ f̂ ðωÞ þ ejðπ−ϕðωÞÞ ~̂f gðωÞ: ð17Þ

Following similar analysis as in (6), we simplify (17) to

f̂
a

gðωÞ ¼ sin ϕðωÞejðπ=2−ϕðωÞÞ f̂
a
ðωÞ; ð18Þ

which vanishes for ωo0. Thus, f agðtÞ represents a further

extension of the ϕ�AS construction, which we shall refer

to as the generalized-phase AS (GPAS). The function ϕðωÞ
should be chosen such that sin ϕðωÞ does not vanish over

a finite-length interval; otherwise, the spectral informa-

tion is lost and recovery of f(t) from f
a
gðtÞ is impossible.

Taking the inverse FT on both sides of (17) gives

f
a
gðtÞ ¼ f ðtÞ þ F−1fejðπ−ϕðωÞÞ ~̂f gðωÞg: ð19Þ

Since ðf 1nf 2ÞðtÞ⟷
F

f̂ 1ðωÞf̂ 2ðωÞ, we rewrite (19) equivalently

as

f
a
gðtÞ ¼ f ðtÞ þ ℓðtÞn~f gðtÞ; ð20Þ

where ℓðtÞ ¼F−1fejðπ−ϕðωÞÞg, which must be interpreted in

the distributional sense. Let L denote the convolutional

Fig. 5. Edge-enhancement and selectivity of the GPHT: (a) 1½−3;3� , (b) ϕðωÞ ¼ 0:1þ 0:1ω (or ϕðωÞ ¼−0:1−0:1ω), (c) ϕðωÞ ¼−0:1þ 0:1ω (or ϕðωÞ ¼ 0:1−0:1ω),

(d) ϕðωÞ ¼ 0:5þ 0:1ω (or ϕðωÞ ¼ 0:5−0:1ω), and (e) ϕðωÞ ¼−0:5þ 0:1ω (or ϕðωÞ ¼−0:5−0:1ω).
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operator associated with the kernel ℓðtÞ, that is, Lff gðtÞ ¼
ðℓnf ÞðtÞ. Then, we get that

f
a
gðtÞ ¼ f ðtÞ þ LHgff gðtÞ: ð21Þ

In Fig. 6, we show the construction of the GPAS using the

GPHT. Eq. (18) can be rewritten as

f̂
a

gðωÞ ¼ α̂ðωÞf̂
a
ðωÞ; ð22Þ

where α̂ðωÞ ¼ sin ϕðωÞejðπ=2−ϕðωÞÞ. Taking the inverse FT on

both sides of (22), we get that f
a
gðtÞ ¼ ðαnf aÞðtÞ, that is, the

GPAS is obtained from Gabor's AS through a linear filtering

operation, such that the filter has the impulse response αðtÞ ¼
F−1f sin ϕðωÞejðπ=2−ϕðωÞÞg. This also implies that f

aðtÞ can be

obtained from f
a
gðtÞ through the inverse filter whose impulse

response is given by α−1ðtÞ ¼F−1fcosec ϕðωÞejðϕðωÞ−π=2Þg such
that f

a
gðtÞ ¼ ðα−1nf agÞðtÞ. In Table 3, we give the expressions for

αðtÞ and α−1ðtÞ corresponding to different polynomial-phase

kernels. Since f ðtÞ ¼ Realff aðtÞg, we get from (18) that

f ðtÞ ¼ RealfF−1fcosec ϕðωÞe−jðϕðωÞ−π=2Þ f̂
a

gðωÞgg: ð23Þ

We note from (21), that the GPAS also satisfies properties of

linearity, shift-invariance, and scale-invariance, similar to the

ϕ�AS. We next consider specific examples of linear and

quadratic phase functions.

5.1. Linear phase function: ϕðωÞ ¼ ϕ0 þ ϕ1ω

In this case, ℓðtÞ ¼ ejðπ−ϕ0Þδðt þ ϕ1Þ, and substituting ℓðtÞ
into (20), we get that

f
a
gðtÞ ¼ f ðtÞ þ ejðπ−ϕ0Þδðt þ ϕ1ÞnHgff gðtÞ: ð24Þ

The corresponding FT is given by

f̂
a

gðωÞ ¼ 2 sin ðϕ0 þ ϕ1ωÞejðπ=2−ðϕ0þϕ1ωÞÞ f̂ ðωÞUðωÞ:

5.2. Quadratic phase function: ϕðωÞ ¼ ϕ0 þ ϕ1ωþ ϕ2ω
2

A quadratic-phase kernel in frequency is associated

with a quadratic-phase function in time as shown by the

Fourier pair:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðj=4πϕ2Þ
p

ejðtþϕ1Þ2=4ϕ2⟷

F
ejðϕ1ωþϕ2ω

2Þ. Then, we

get that

ℓðtÞ ¼F−1fejðπ−ðϕ0þϕ1ωþϕ2ω
2ÞÞg

¼−

ffiffiffiffiffiffiffiffiffiffiffi

j

4πϕ2

s

ejððtþϕ1Þ2=4ϕ2−ϕ0Þ: ð25Þ

Substituting (25) in (20) gives

f
a
gðtÞ ¼ f ðtÞ−

ffiffiffiffiffiffiffiffiffiffiffi

j

4πϕ2

s

ejððtþϕ1Þ2=4ϕ2−ϕ0ÞnHgff gðtÞ
 !

: ð26Þ

The corresponding FT is given by

f̂
a

gðωÞ ¼ 2 sin ðϕ0 þ ϕ1ωþ ϕ2ω
2Þ

ejðπ=2−ðϕ0þϕ1ωþϕ2ω
2ÞÞ f̂ ðωÞUðωÞ: ð27Þ

By setting ϕ0 ¼ ϕ1 ¼ 0 in (26), we get that

~f gðtÞ ¼F−1fe−jϕ2ω
2

f̂ ðωÞUðωÞ þ ejϕ2ω
2

f̂ ðωÞUð−ωÞg and

f
a
gðtÞ ¼ f ðtÞ−

ffiffiffiffiffiffiffiffiffiffiffi

j

4πϕ2

s

ejt
2=4ϕ2nHgff gðtÞ

 !

: ð28Þ

The quadratic-phase GPHT, the generalized HT (GHT)

proposed by Zayed [17], and the generalized analytic signal

proposed by Fu and Li [22] involve the use of quadratic

chirps, but the chirping takes place in different domains

and in different ways. We shall explain this aspect further.

The GHT is constructed by multiplying the signal with a

quadratic chirp in time, followed by convolution with the

standard Hilbert convolutional kernel, and dechirping in

time-domain, whereas the GPHT is obtained by multi-

plying the signal spectrum with frequency-domain chirps:

the positive and negative frequencies are multiplied with

chirps of opposite slopes. The GAS of Fu and Li is based on

a two-parameter (a,b) Hilbert transform, which reduces to

the Hilbert transform used by Zayed if the two-parameter

version is constrained by considering a=2b to be the

parameter. Fu and Li further apply the LCT to make the

signal analytic in the LCT domain.

6. Causality and the ϕ�analytic signal

A signal f(t) is said to be causal if it vanishes for to0.

The real and imaginary parts of the FT of a causal signal

form a HT pair, that is, f̂ ðωÞ ¼ f̂ RðωÞ þ jf̂ IðωÞ, where f̂ RðωÞ
and f̂ IðωÞ denote the real and imaginary parts of the f̂ ðωÞ,
respectively, such that f̂ IðωÞ ¼Hff̂ RðωÞg [29,31,32]. Clearly,
a causal signal and Gabor's AS are time–frequency duals

and therefore, the ϕ�AS construction proposed in Section

2 can be extended to causal signals as well. In particular,

consider the following spectral representation:

f̂ cðωÞ ¼ f̂ RðωÞ þ ejðπ−ϕÞHϕff̂ RgðωÞ ¼Aϕff̂ RgðωÞ;

where the operator Aϕ acts in the frequency domain. We

observe that f̂ cðωÞ is the ϕ�AS of the real function f̂ RðωÞ in
the frequency domain, such that the corresponding time

function is causal. Using (7), we get that f̂ cðωÞ ¼
sin ϕejðπ=2−ϕÞAff̂ RgðωÞ, and since Aff̂ RgðωÞ ¼ f̂ ðωÞ, we get

that

f̂ cðωÞ ¼ sin ϕejðπ=2−ϕÞ f̂ ðωÞ or

f ðtÞ ¼ cosec ϕejðϕ−π=2Þf cðtÞ ¼F−1fAϕff̂ RðωÞgg:

Fig. 6. Construction of the ϕ�AS using the generalized-phase HT.

Table 3

αðtÞ and α−1ðtÞ for certain phase kernels.

ϕðωÞ αðtÞ α−1ðtÞ

ϕ0 sin ϕ0e
jðπ=2−ϕ0 ÞδðtÞ cosec ϕ0e

jðϕ0−π=2ÞδðtÞ
ϕ1ω 0:5δðtÞ−0:5δðt þ 2ϕ1Þ −j

2ϕ1

cotð πt
2ϕ1

Þ

ϕ2ω
2 j

ffiffiffiffiffiffiffi

jϕ2

p

4ϕ2

ffiffiffiffiffiffi

2π
p ejt

2=8ϕ2 þ 1

2
δðtÞ

Intractable
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This implies that it is possible to characterize a family of

causal functions using the FrHT: a real frequency function

combined with its standard HT in quadrature results in a

causal signal, whereas appropriate linear combination of

the frequency function with its FrHT also results in a causal

signal. Proceeding along similar lines, it can be shown that

causal signals can also be characterized using the GPHT

proposed in Section 4, that is, the signal constructed in the

frequency domain as

f̂ c;gðωÞ ¼ f̂ RðωÞ þ LHgff̂ RgðωÞ; ð29Þ

is causal. We considered the characterization of causal

signals using f̂ RðωÞ and its FrHT/GPHT. Analogously, we can

characterize causal signals using f̂ IðωÞ and its FrHT/GPHT.

Consider the causal signal f ðtÞ ¼ 1½τ1−τ=2;τ1þτ=2�, which is

the indicator function for the interval ½τ1−τ=2; τ1 þ τ=2�, such
that τ14τ=2. Its FT is given by f̂ ðωÞ ¼ τ sincðωτ=2Þe−jωτ1 .
Correspondingly, the real part f̂ RðωÞ ¼ τ sincðωτ=2Þ cos ðωτ1Þ.
The FrHT of f̂ RðωÞ is given by Hϕff̂ RgðωÞ ¼ τ sincðωτ=2Þ
cos ðωτ1−ϕÞ, where we have used the generalized Bedrosian

identity [26]; the condition τ14τ=2 ensures that the signal

obeys the separability condition required for the theorem to

be applicable. In Fig. 7(a) and (b), we show f̂ R, f̂ I , and Hϕff̂ Rg
corresponding to the case when τ¼ 2 and τ1 ¼ 3, and the

FrHT phase ϕ¼−3π=4. From (29), we get that

f̂ cðωÞ ¼ τ sinc
ωτ

2

� 	

cos ðωτ1Þ−ejϕτ sinc
ωτ

2

� 	

cos ðωτ1−ϕÞ

¼ τ sinc
ωτ

2

� 	

ð cos ðωτ1Þ−ejϕ cos ðωτ1−ϕÞÞ

¼ sin ϕejðωτþϕ−π=2Þτ sinc
ωτ

2

� 	

: ð30Þ

Taking the inverse FT on both sides of (30), we get that

f cðtÞ ¼ sin ϕejðπ=2−ϕÞF−1 τ sinc
ωτ

2

� 	

e−jωτ1
n o

¼ sin ϕejðπ=2−ϕÞf ðtÞ;

that is, fc(t) is a scaled version of the causal function f(t), and is

causal as well. This implies that the causal f(t) is expressible

using f̂ RðωÞ and its FrHT, just as the f̂ RðωÞ and its standard HT

is used to describe f(t).

7. Application to secure single-sideband modulation

scheme

The AS is employed in communication systems through

the single-sideband modulation (SSB) scheme, which

results in bandwidth savings by a factor of two compared

to the baseband signal. For the purposes of security, a

secret key is often employed such that perfect recovery of

the signal is possible only with the knowledge of the key

[18,21]. We show next that it is possible to develop a

secure SSB system with multiple secret keys using the

GPHT proposed in Section 4, which includes the FrHT as a

special case.

Consider the case of GPHT with polynomial-phase

kernel, that is, ϕðωÞ ¼∑2
i ¼ 0ϕiω

i, using which we construct

the GPAS f
a
gðtÞ. As noted in Section 4, phase kernels of

orders larger than two lead to diverging GPHT convolu-

tional kernels, such that the inverse GPHT is ill-posed.

Hence, we shall consider only the second-order polyno-

mial case. From (23), we observe that, in order to construct

f(t) from f
a
gðtÞ, we need prior knowledge of the key vector

½ϕ0;ϕ1;ϕ2�. Motivated by this observation, we propose a

secure SSB scheme that uses ½ϕ0;ϕ1;ϕ2� as the secret key

vector. As shown in Fig. 8(a)–(d), the signal f(t) is encoded

using the phase kernel ϕðωÞ, to generate the GPAS f
a
gðtÞ,

which is transmitted after modulating with a carrier of

frequency ωc. At the receiver, y(t) is demodulated to get

f
a
gðtÞ, which is further decoded using the phase kernel

ϕðωÞ þ Δϕ. Unless the phase kernel/key vector used at

receiver end coincides exactly with that used for encoding

(that is, Δϕ¼ 0), the decoded signal will differ from the

desired message f(t), and the decoded signal will only be

an approximation of f(t), which we denote by f ðtÞ. Errors
are also introduced due to the presence of noise in the

channel. In what follows, we first analyze sensitivity of the

decoding process with respect to key perturbation Δϕ,

assuming noise-free conditions, followed by performance

analysis in the presence of additive channel noise, for

three specific cases of ϕðωÞ, and we use the frequency-

domain implementation of the operators for this purpose.

7.1. Effect of key perturbations

We consider the effect of key perturbations Δϕ on the

received signal, assuming noiseless transmission. By fol-

lowing the block diagrams in Fig. 8(c) and (d), we get that

f ðtÞ ¼ Real F−1 sin ϕðωÞ
sin ðϕðωÞ þ ΔϕÞ e

−jðΔϕÞ f̂
a
ðωÞ


 �
 �

: ð31Þ

We consider three specific cases of the phase kernel,

namely, ϕðωÞ ¼ ϕ0, ϕðωÞ ¼ ϕ1ω, and ϕðωÞ ¼ ϕ2ω
2. The corre-

sponding perturbations are given by Δϕ¼Δϕ0, Δϕ¼Δϕ1ω,

and Δϕ¼Δϕ2ω
2, respectively. In Fig. 9(a)–(c), we show the

energy of the error Eðf−f Þ as a function of Δϕi=ϕi � 100,

for i¼ 0;1;2, expressed as a percentage of the signal energy

a b

Fig. 7. Characterization of causal signals using the FrHT: (a) signal f ðtÞ ¼ 1½2;3� and (b) spectral functions. The black and red curves indicate the real and

imaginary parts of f̂ ðωÞ, respectively. The blue curve depicts Hϕff̂ RgðωÞ for ϕ¼−3π=4. (For interpretation of the references to color in this figure caption, the

reader is referred to the web version of this article.)
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Ef, corresponding to the AM–FM signal f ðtÞ ¼ ð1þ
0:5 cos ð10πtÞÞ cos ð50πtÞ, for the interval ½0;1� seconds, after
multiplying with a Hamming window. In each case, the

analysis is carried out for key values lying in the interval

½−π;þπ� in steps of 0:1π. We observe that the error plots are

asymmetric with respect to the perturbation: the error is

larger for negative perturbations. As expected, the error is

zero for all the three cases when the perturbation is zero. In

each case, the error plots corresponding to negative key

values coincide with those obtained for positive key values.

In the cases ϕðωÞ ¼ ϕ1ω and ϕðωÞ ¼ ϕ2ω
2, for a given Δϕ, the

plots for different encode key values almost coincide, unlike

the ϕðωÞ ¼ ϕ0 case, where different encode key values lead to

different error plots. Also, for a given perturbation, larger the

magnitude of the encode key, larger the error. This character-

istic can be explained with the help of (31). Assuming that

Δϕ is sufficiently small, we get that sin ðϕðωÞ þ
ΔϕÞ≈ sin ϕðωÞ and e−jΔϕ≈1−jΔϕ, (31) can be simplified as

f ðtÞ ¼ RealfF−1f1−jΔϕiω
igf̂

a
ðωÞg

¼ f ðtÞ−ϕiReal F−1 j
Δϕi

ϕi

� �

ωi f̂
a
ðωÞ


 �
 �

;

that is, for a given fractional perturbation Δϕi=ϕi, the error

f ðtÞ−f ðtÞ is directly proportional to the key value ϕi, and the

magnitude of the error is not affected by the polarity of ϕi.

Consequently, the SSB scheme allows for security in the form

of the phase kernel keys, a feature not possessed by Gabor's

AS-based SSB.

7.2. Effect of noise

We next consider the performance of the proposed

secure SSB scheme under noisy conditions. We use the test

signal f(t) and the GPHT phase kernels considered in

Section 7.1. We assume that the encode and decode keys

coincide, so that no errors are introduced due to key

perturbations. The channel noise is modeled as additive,

complex, white Gaussian noise such that the real and

imaginary components of the noise add to the real and

imaginary parts of the GPAS, respectively. The experiment

is performed at different signal-to-noise ratio (SNR) levels.

For a particular GPHT kernel, the MSE values are obtained

by averaging over 2000 repeated trials of the experiment.

From Fig. 10(a)–(c), we observe that the MSE decreases as

the SNR increases. We notice that in the case when

ϕðωÞ ¼ ϕ0, the noise performance for different key values

coincide. In the case when ϕðωÞ ¼ ϕ1ω, for a given SNR, the

MSE increases as jϕ1j increases, as shown in Fig. 10(b). We

also observe similar behavior in the case when ϕðωÞ ¼ ϕ2ω
2

as shown in Fig. 10(c). Since the MSE increases with the

magnitude of ϕ1 and ϕ2, it is preferable to use keys of

moderate magnitudes in the communication process.

Although we have considered the design of a secure SSB

system using polynomial-phase kernels, in principle, more

sophisticated phase functions could be employed. For

example, the linear phase kernel may be generalized to a

piecewise-linear function, thereby introducing more

security keys.

We next compare the performance of the proposed

secure SSB with that of the secure SSB proposed by Tao

et al. [21] (which we shall refer to as SSB-Tao). Tao et al.

used the following FrFT-based FrHT definition:

hα;φðtÞ ¼ cos φe−jðt
2=2Þcot αf ðtÞ þ sin φe−jðt

2=2Þcot α ~f ðtÞ; ð32Þ

and the corresponding analytic signal is obtained as

sα;φðtÞ ¼ e−jðt
2=2Þcot αf ðtÞ−e−jφhα;φðtÞ:

SSB-Tao employs two secret keys, α and φ. In the particular

case when cot α¼ 0, hα;φðtÞ ¼ cos φf ðtÞ þ sin φ~f ðtÞ ¼ ~f φðtÞ,
and hence, SSB-Tao coincides with the proposed secure

Fig. 8. Multi-key secure SSB modulation scheme: (a) modulator, (b) demodulator, (c) details of the modulator, and (c) details of the demodulator.
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SSB scheme (which we shall refer to as SSB-GPHT),

corresponding to ϕðωÞ ¼ φ. In the case when cot α≠0, we

compare the performance of SSB-Tao with that of SSB-

GPHT with two secret keys, that is, when ϕðωÞ ¼ ϕ0 þ ϕ1ω.

The values of ϕ0 and ϕ1 are chosen to be equal to 0:1π and

0:1π, respectively, according to MSE plots in Fig. 10(a) and

(b), to result in good noise performance. Since the role of φ

in hα;φðtÞ is equivalent to that of ϕ0 in GPHT, we choose

φ¼ ϕ0 ¼ 0:1π and vary α over ½0:1π;0:9π�. We consider

performance of SSB-Tao and SSB-GPHT when applied to

the signal f ðtÞ ¼ ð1þ 0:5 sin ð10tÞÞ cos ð500tþ 0:01 sin ð30tÞÞ.
In Fig. 11(a), we show the MSE variation of SSB-Tao scheme

as a function of SNR and α. We observe that, for a given

SNR, the MSE does not vary significantly with α. In Fig. 11

(b), we show the MSE versus SNR plots for the two

methods when α¼ 0:5π. We observe that for a given

SNR, the MSE of the SSB-Tao is larger than that of SSB-

GPHT. Though our formalism is in the continuous-time

domain, we have used the corresponding discrete-time

implementation for experimental validation, in which

case, the ϕ�AS coincides with that proposed by Tseng

et al. [18].

8. Conclusion

We proposed a generic construction of the AS based on

the FrHT. This signal is referred to as the ϕ�AS and is

dependent on the phase of the fractional Hilbert operator.

Fig. 9. Error energy versus key perturbation for different values of security key ϕ2: (a) ϕðωÞ ¼ ϕ0 , (b) ϕðωÞ ¼ ϕ1ω, and (c) ϕðωÞ ¼ ϕ2ω
2 .

Fig. 10. MSE as a function of SNR, expressed in percentage signal energy: (a) ϕðωÞ ¼ ϕ0 , (b) ϕðωÞ ¼ ϕ1ω, and (c) ϕðωÞ ¼ ϕ2ω
2 .
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The classical Gabor's construction becomes a special case

of our construction. We also gave a geometric interpreta-

tion of the new method, which gives rise to the ϕ�AS

naturally. The ϕ�AS enjoys important invariances and

factorization properties similar to Gabor's AS. It also

satisfies the same time–frequency localization properties

(Heisenberg's uncertainty principle). This approach led us

to a further generalization, where the fractional Hilbert

operator is replaced by a phase function leading to the

GPHT. We showed that the GPHT possesses many of the

properties of the FrHT, including selective enhancement

and highlighting of edges, and a connection with Lie

groups. We also proposed the generalized-phase AS, which

is a generalization of the ϕ�AS using the GPHT, and

showed that the GPAS and Gabor's AS are related by a

linear filtering operation. We showed that it is possible to

characterize causal signals in terms of the FrHT/GPHT, by

identifying the duality between the notions of analyticity

and causality. As an application of the GPAS, we developed

a multi-key secure SSB modulation scheme. Decode key

perturbation analysis and noise-performance analysis

showed that the proposed SSB scheme has the potential

for incorporating additional security into communication

systems.

The proposed GPHT may also be employed to transform

orthonormal bases and since the transformation is unitary,

certain smoothness and decay properties may be pre-

served, although localization properties may not be pre-

served. A recent seminal contribution in this direction was

made by Chaudhury and Unser [37], who addressed the

question in the general setting of non-compactly sup-

ported wavelet bases and showed that the Hilbert trans-

form of a wavelet is again a wavelet and that the

transformation preserves smoothness and decay proper-

ties. With regard to localization, Chaudhury and Unser

showed that it is controlled by the number of vanishing

moments of the original wavelet. Since the GPHTs are a

functional generalization of the standard HT, it would be

possible to perform a characterization of the GPHTs of

wavelets in terms of the associated smoothness, decay, and

localization, along the lines of [37].
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