Dear colleagues, regarding our last meeting, please find below extensive details regarding how to grade the first Homework for CS101.

- If needed, please also find again the few slides asking these problems.

- There is a lot of details in this email, please try to read, practice and understand all of it, if you think you need it.

What deadline?

Let us try to have ALL the grades by **next Wednesday**, so we can try to give back the homework as soon as possible (on the next lab, next week), before the first Mid-Term exam.

Who grades what?

- I take my two groups (A1, A4: I have all the answers),
- Prof. Vipin takes his two groups (A2, B2: he still have to collect the last answers),
- Prof. Thiyagarajan (assisted by Prof. Kondaiah) takes two of his groups (A3, B4, still have to collect B4 tomorrow, A3 next Monday),
- Prof. Arya and Prof. Vivek takes the last groups (B1, B3, still have to collect B1 next Monday).

Marking scheme to follow

Please find attached two examples of answer papers, corrected in red color by me, and scanned. I propose the following marking scheme (can be modified if you think it needs to) :

- 20 total marks.
- 3 marks for Pb1, 6 marks for Pb2, 3 marks for Pb3, 5 marks for Pb4, and 2 marks for Pb5 + 1 bonus point.

In details, I suggest this:

Problem 1:

- 1 mark for input values x, y
- 1 mark for $x_{min} < x < x_{max}$ and $y_{min} < y < y_{max}$
- 1 mark for the good output ("Inside" or "Outside")

Problem 2 (the harder):

- 1 mark for the good input for x, y
- 3 marks for how to compute the equation of the line (ax + by + c) / the z-component of the cross product $(\overrightarrow{PQ} \times \overrightarrow{PA}). \overrightarrow{z}$ (cf. my last email for more math. details about that test)
- 2 marks for the correct output regarding the sign of ax + by + c (if they used the equation of the line) / of the cross product (be sure to check if they did not mess up the sign and the direction, printing left when it should be right or the opposite)

Problem 3:

- 1 mark for computing the distance with the good math formula $(d = \sqrt{(x x_c)^2 + (y y_c)^2})$
- 2 marks if the three cases of the output are good (on the circle if d = r, outside if d > r, inside if d < r)

Problem 4:

- 2 marks for explicitly computing the 3 equations for AB, BC, CA / or computing the z-component of three different cross-product.
- 2 marks if they say which values have to be positive for the point to be inside the rectange
- 1 mark for the good output

Problem 5:

• 2 marks, as you like. Basically, 2 if they did it in a way you understand, 0 otherwise.

Bonus !

Finally, I suggest a last +1 point if the student did good drawings and/or a good presentation.

More details about the solutions, and their respective Python programs

If you need more detail about the solution, please find attached one Python program that solves each problem; or in the .zip archive file, one file for each problem.

(You should be able to execute it on your laptop, or on any on-line Python 2 interpreter, as repl.it/languages/Python or pythontutor.com/visualize.html).

Practice your Python!

For example, for the problem 1, please consult the page http://repl.it/9NX for all the problems.

Or click on these links: http://goo.gl/xwN89a for a visual demo of the execution of the program for problem 1. http://goo.gl/rIFW8p for problem 2, or http://goo.gl/3m6Wgl for problem 3, http://goo.gl/UH6pjZ for problem 4, and http://goo.gl/Wkdoq4 for problem 5.

How / Where to input the grades?

As discussed, let us try the built-in feature of Moodle for this. Please go to that page (www.mahindraecolecentrale.edu.in/portal/grade/report/grader/index.php?id=27) as soon as you are done grading your group(s). Then, log-in with usual id/password, select your group, and click on "Turn editing on". Finally, you can add all the grades for your group, and click on save.

- If this fails, we will go back to using a basic XL sheet.
- If you lost your ID or password, I will create a new one for you.

CS101

Happy grading !

--Lilian

Included solution for problems 1 and 2

Problem 1

Problem 2

```
def isLeftOrRight(p=(0, 0), q=(0, 1), a=(1, 1)):
      return ((q[1] - p[1]) * (a[0] - p[0])) - ((q[0] - p[0]) * (a[1] - p\leftrightarrow
          [1]))
3
4 xP, yP = input("For P: xP, yP = ?")
_{5} xQ, yQ = input("For Q: xQ, yQ = ?")
_{6} xA, yA = input ("For A: xA, yA = ?")
  check_for_A = isLeftOrRight(p=(xP, yP), q=(xQ, yQ), a=(xA, yA))
8
  if check_for_A == 0:
10
     print "A is on the line (P, Q)."
11
 elif check_for_A > 0:
     print "A is on the 'left' of the line (direction from P to Q)."
14 elif check_for_A < 0:</pre>
     print "A is on the 'right' of the line (direction from P to Q)."
15
16 else:
     print "Huhu... Weird case (not supposed to happen)!"
17
```