
Data Structures for Programming with Python
CS101 lectures : part 3

Professor Lilian Besson

Mahindra École Centrale (School of Computer Science)

March 16th, 2015

Please contact me by email if needed: CS101@crans.org
Slides and examples will be uploaded on Moodle.

http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/
mailto:CS101{@}{crans}{.}{org}

Presentation Outline for these lectures

Overview of the content of these lectures

1 Presentation

2 A quick and interactive sum-up of the first two months
A game in Python ? 3 minutes of fun!

3 Data structures for programming cleverly (3 lectures)
Lists in Python (1/3)
Sets in Python (2/3)
Dictionaries in Python (3/3)

4 Sum-um about data structures : lists, sets, and dicts

Stay focus, listen and take notes
If you talk or disturb my lectures, I will kick you out immediately.
OK ?

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 1 / 36

http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Presentation Outline for these lectures

Overview of the content of these lectures

1 Presentation

2 A quick and interactive sum-up of the first two months
A game in Python ? 3 minutes of fun!

3 Data structures for programming cleverly (3 lectures)
Lists in Python (1/3)
Sets in Python (2/3)
Dictionaries in Python (3/3)

4 Sum-um about data structures : lists, sets, and dicts

Stay focus, listen and take notes
If you talk or disturb my lectures, I will kick you out immediately.
OK ?

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 1 / 36

http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

A quick and interactive sum-up of the first two months A game in Python ? 3 minutes of fun!

A multi-player “Bomberman” game written in Python

During 3 minutes, try to see in this demo where and how each of
the studied concepts are used:

Concepts already studied in CS101 lectures and labs
– Variables,
– Arithmetical operations,
– Printing and interaction with the user,
– Conditional tests (if-elif-else),
– Conditional loops (while),
– Lists and for loops over a list,
– . . .

– (and many more things were used)

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 2 / 36

http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Lists in Python (1/3)

Definition and concept of a list in Python

Concept of a list and definition (not new)
“A list is a (finite) ordered sequence of any
kind of Python values.”

Goal ?
ÝÑ efficiently and easily store any kind of data, that
can be accessed and modified later.

Practice by yourself (online)?
You should try to practice a little bit by yourself, additionally to the labs.
That page IntroToPython.org/lists_tuples.html contains great exercises!

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 3 / 36

https://docs.python.org/2/tutorial/introduction.html#lists
http://introtopython.org/lists_tuples.html#lists
http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Lists in Python (1/3)

Definition and concept of a list in Python

Concept of a list and definition (not new)
“A list is a (finite) ordered sequence of any
kind of Python values.”

Goal ?
ÝÑ efficiently and easily store any kind of data, that
can be accessed and modified later.

Practice by yourself (online)?
You should try to practice a little bit by yourself, additionally to the labs.
That page IntroToPython.org/lists_tuples.html contains great exercises!

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 3 / 36

https://docs.python.org/2/tutorial/introduction.html#lists
http://introtopython.org/lists_tuples.html#lists
http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Lists in Python (1/3)

Defining, accessing, modifying a list

Defining a list and reading its elements (not new)
– it is easy to define a list:

— empty l = [],
— or not l = [3, 4, 5], team = ['Rahul', 'Nikitha'] etc,

– and to read its elements: l[0], . . . , l[n-1]
(if n = len(l) is the length of the list, ie. its size)).

Two important warnings (new!)
– indexing starts from 0 to n ´ 1 and not from 1 !
– indexing errors can (and will) happen: for k ą n ´ 1,

l[k] raises a IndexError: list index out of range .

Modifying a list in place (not new)
– modifying one element: l[0] = 6 makes l becoming [6, 4, 5],
– modifying a slice (a sub-list) will be seen after.

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 4 / 36

http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Lists in Python (1/3)

Defining, accessing, modifying a list

Defining a list and reading its elements (not new)
– it is easy to define a list:

— empty l = [],
— or not l = [3, 4, 5], team = ['Rahul', 'Nikitha'] etc,

– and to read its elements: l[0], . . . , l[n-1]
(if n = len(l) is the length of the list, ie. its size)).

Two important warnings (new!)
– indexing starts from 0 to n ´ 1 and not from 1 !
– indexing errors can (and will) happen: for k ą n ´ 1,

l[k] raises a IndexError: list index out of range .

Modifying a list in place (not new)
– modifying one element: l[0] = 6 makes l becoming [6, 4, 5],
– modifying a slice (a sub-list) will be seen after.

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 4 / 36

http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Lists in Python (1/3)

One classic example of lists: arithmetical progressions

range creates (finite) arithmetical progressions (not new)
The range function can be used, in three different ways:

– range(n) “ r0, 1, .., n ´ 1s,
– range(a, b) “ ra, a ` 1, .., b ´ 1s,
– range(a, b, k) “ ra, a ` k, a ` 2k, .., a ` i ˆ ks (last i with a ` ik ă b).

Default values are a “ 0 and k “ 1, and k ‰ 0 is required.

Useful for loops! (not new)
For example, to print the square of the first 30 odd integers:

1 for i in r a n g e (1, 31, 2):
2 # 1 <= i < 1 + 2 * (3 1 / 2) - 1
3 p r i n t i, " **2 is " , i**2

Remark: if we just use range in a for loop, the xrange function is better
(more time and memory efficient).

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 5 / 36

http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Lists in Python (1/3)

One classic example of lists: arithmetical progressions

range creates (finite) arithmetical progressions (not new)
The range function can be used, in three different ways:

– range(n) “ r0, 1, .., n ´ 1s,
– range(a, b) “ ra, a ` 1, .., b ´ 1s,
– range(a, b, k) “ ra, a ` k, a ` 2k, .., a ` i ˆ ks (last i with a ` ik ă b).

Default values are a “ 0 and k “ 1, and k ‰ 0 is required.

Useful for loops! (not new)
For example, to print the square of the first 30 odd integers:

1 for i in r a n g e (1, 31, 2):
2 # 1 <= i < 1 + 2 * (3 1 / 2) - 1
3 p r i n t i, " **2 is " , i**2

Remark: if we just use range in a for loop, the xrange function is better
(more time and memory efficient).

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 5 / 36

http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Lists in Python (1/3)

Looping over a list

To loop over a list, there is 3 approaches (new!)
– for i in range(len(l)): (not new)

then the values of l can be obtained with l[i] (one by one),
– for x in l: (not new)

then the values of l are just x (one by one),
– for i, x in enumerate(l): (new!)

then the values of l are just x (one by one),
but can be modified with l[i] = newvalue

– Warning: modifying this x will not change the list!

Example of a simple for loop

1 for name in [' Awk Girl ', ' B a t m a n ', ' W o n d e r W o m a n ']:
2 p r i n t name , " is a m e m b e r of the JLA . "

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 6 / 36

http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Lists in Python (1/3)

Looping over a list

To loop over a list, there is 3 approaches (new!)
– for i in range(len(l)): (not new)

then the values of l can be obtained with l[i] (one by one),
– for x in l: (not new)

then the values of l are just x (one by one),
– for i, x in enumerate(l): (new!)

then the values of l are just x (one by one),
but can be modified with l[i] = newvalue

– Warning: modifying this x will not change the list!

Example of a simple for loop

1 for name in [' Awk Girl ', ' B a t m a n ', ' W o n d e r W o m a n ']:
2 p r i n t name , " is a m e m b e r of the JLA . "

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 6 / 36

http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Lists in Python (1/3)

Negative indexing and slicing for a list

Negative indexing of a list l? (new!)
We can read its elements from the end with negative indexes.

– Instead of writing l[n-1], write l[-1]: it is simpler!
– Similarly l[-2] is like l[n-2] etc.

Warning: indexing errors can still happen, l[-k] raises a IndexError: list
index out of range when k ą n.

Slicing for a list? l (new!)
Slicing a list is useful to select a sub-list of the list: l[first:bound:step].
By default, first is 0 (inclusive), bound is n (exclusive), step is 1.

– reading a slice: l[0:3], l[2:] or l[:3] or l[0::2] for examples.
– modifying a slice: l[:5] = [0]*5 for example puts a 0 in each of the 5

values l[i] for 0 ď i ă 5,
– Warning: modifying a slice with a list of different size might raise an

error like ValueError: attempt to assign sequence of size 5 to
extended slice of size 4 (it is a tricky point, be cautious).

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 7 / 36

http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Lists in Python (1/3)

Negative indexing and slicing for a list

Negative indexing of a list l? (new!)
We can read its elements from the end with negative indexes.

– Instead of writing l[n-1], write l[-1]: it is simpler!
– Similarly l[-2] is like l[n-2] etc.

Warning: indexing errors can still happen, l[-k] raises a IndexError: list
index out of range when k ą n.

Slicing for a list? l (new!)
Slicing a list is useful to select a sub-list of the list: l[first:bound:step].
By default, first is 0 (inclusive), bound is n (exclusive), step is 1.

– reading a slice: l[0:3], l[2:] or l[:3] or l[0::2] for examples.
– modifying a slice: l[:5] = [0]*5 for example puts a 0 in each of the 5

values l[i] for 0 ď i ă 5,
– Warning: modifying a slice with a list of different size might raise an

error like ValueError: attempt to assign sequence of size 5 to
extended slice of size 4 (it is a tricky point, be cautious).

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 7 / 36

http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Lists in Python (1/3)

Some functions for lists

We give here some functions for lists, already seen and used in labs.

5 useful functions (not new)
– len gives the length of the list (and len([]) = 0),
– min and max returns the minimum and the maximum of the list.

Might raise ValueError: min() arg is an empty sequence.
– sum computes the sum of the values in the list.

Warning: there is no prod function to compute the product!
– sorted sorts the list (if possible, in Opn logpnqq in the worst case), and

returns a new copy of the list, sorted in the increasing order.

And more functions are available!
– all (resp. any) computes the boolean @x P mylist (resp. Dx P mylist),
– filter and map are not really used in practice,
– and reduce is . . . more complicated.

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 8 / 36

https://docs.python.org/2/library/functions.html#len
https://docs.python.org/2/library/functions.html#min
https://docs.python.org/2/library/functions.html#max
https://docs.python.org/2/library/functions.html#sum
https://docs.python.org/2/library/functions.html#sorted
https://docs.python.org/2/library/functions.html
https://docs.python.org/2/library/functions.html#all
https://docs.python.org/2/library/functions.html#any
https://docs.python.org/2/library/functions.html#filter
https://docs.python.org/2/library/functions.html#map
https://docs.python.org/2/library/functions.html#reduce
http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Lists in Python (1/3)

Some functions for lists

We give here some functions for lists, already seen and used in labs.

5 useful functions (not new)
– len gives the length of the list (and len([]) = 0),
– min and max returns the minimum and the maximum of the list.

Might raise ValueError: min() arg is an empty sequence.
– sum computes the sum of the values in the list.

Warning: there is no prod function to compute the product!
– sorted sorts the list (if possible, in Opn logpnqq in the worst case), and

returns a new copy of the list, sorted in the increasing order.

And more functions are available!
– all (resp. any) computes the boolean @x P mylist (resp. Dx P mylist),
– filter and map are not really used in practice,
– and reduce is . . . more complicated.

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 8 / 36

https://docs.python.org/2/library/functions.html#len
https://docs.python.org/2/library/functions.html#min
https://docs.python.org/2/library/functions.html#max
https://docs.python.org/2/library/functions.html#sum
https://docs.python.org/2/library/functions.html#sorted
https://docs.python.org/2/library/functions.html
https://docs.python.org/2/library/functions.html#all
https://docs.python.org/2/library/functions.html#any
https://docs.python.org/2/library/functions.html#filter
https://docs.python.org/2/library/functions.html#map
https://docs.python.org/2/library/functions.html#reduce
http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Lists in Python (1/3)

Some methods for lists

2 convenient notations: (new!)
– l1 + l2 is the concatenation of the two lists l1 and l2,
– l * k is like l + l + . . . + l, k times. Example: l = [0] * 100.

Some methods for lists can be useful.

7 simple methods: (new!)
– l.sort() sorts the list l in place (ie. modifies the list),
– l.append(newvalue) adds the value newvalue at the end
– l.pop() removes and returns the last item,
– l.index(x) returns the first index of value x.

Will raise ValueError if the value x is not present in l,
– l.count(y) counts how many times the value y is present,
– l.extend(otherlist) is like l = l + otherlist,
– l.insert(index, z) will insert the new value z at position index.

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 9 / 36

https://docs.python.org/2/library/stdtypes.html?highlight=list#sequence-types-str-unicode-list-tuple-bytearray-buffer-xrange
http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Lists in Python (1/3)

Some methods for lists

2 convenient notations: (new!)
– l1 + l2 is the concatenation of the two lists l1 and l2,
– l * k is like l + l + . . . + l, k times. Example: l = [0] * 100.

Some methods for lists can be useful.

7 simple methods: (new!)
– l.sort() sorts the list l in place (ie. modifies the list),
– l.append(newvalue) adds the value newvalue at the end
– l.pop() removes and returns the last item,
– l.index(x) returns the first index of value x.

Will raise ValueError if the value x is not present in l,
– l.count(y) counts how many times the value y is present,
– l.extend(otherlist) is like l = l + otherlist,
– l.insert(index, z) will insert the new value z at position index.

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 9 / 36

https://docs.python.org/2/library/stdtypes.html?highlight=list#sequence-types-str-unicode-list-tuple-bytearray-buffer-xrange
http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Lists in Python (1/3)

Sum-up about lists, and what for tomorrow?

About lists, we saw: (new!)
– concept of a list in Python, and how to define it, modify it or its elements

and read them,
– some new concepts, like negative indexing or slicing,
– looping, 3 approaches, and enumerate(l) is new,
– functions for lists (len, max/min, sum, sorted . . .),
– methods for lists (sort, append, pop, index, count, extend etc . . .).

What is next ?
Tomorrow: matrices as list of line vectors, some more list comprehensions,
and one nice example will be seen (with a list of your grades).
We will then introduce sets in Python, like s = { -1, 1 }.

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 10 / 36

http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Lists in Python (1/3)

Sum-up about lists, and what for tomorrow?

About lists, we saw: (new!)
– concept of a list in Python, and how to define it, modify it or its elements

and read them,
– some new concepts, like negative indexing or slicing,
– looping, 3 approaches, and enumerate(l) is new,
– functions for lists (len, max/min, sum, sorted . . .),
– methods for lists (sort, append, pop, index, count, extend etc . . .).

What is next ?
Tomorrow: matrices as list of line vectors, some more list comprehensions,
and one nice example will be seen (with a list of your grades).
We will then introduce sets in Python, like s = { -1, 1 }.

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 10 / 36

http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Lists in Python (1/3)

Outline for today (March 10th) Lecture 2/3

1 Presentation

2 A quick and interactive sum-up of the first two months

3 Data structures for programming cleverly (3 lectures)
Lists in Python (1/3)
Sets in Python (2/3)
Dictionaries in Python (3/3)

4 Sum-um about data structures : lists, sets, and dicts

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 11 / 36

http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Lists in Python (1/3)

Introduction to list comprehensions

Python offers a nice and efficient syntax for easily defining a list
of values obtained with an expression of one index.

What is a list comprehension? (new!)
The syntax is like this: [“expression with i” for i in somelist]

– List of the first 100 triangular numbers?
ãÑ [k*(k+1)/2 for k in range(100)],

– Quickly compute a partial sum of a series? S10000 “
10000
ř

n“1
1{n2

ãÑ S = sum([1.0/(n**2) for n in range(1,10000+1)]),

– Sum of numbers below 10000 that are multiples of 11 or multiples of 7?
ãÑ sum([k for k in range(1,10000) if k%7==0 or k%11==0])

– and many more examples are possible . . .

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 12 / 36

http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Lists in Python (1/3)

Introduction to list comprehensions

Python offers a nice and efficient syntax for easily defining a list
of values obtained with an expression of one index.

What is a list comprehension? (new!)
The syntax is like this: [“expression with i” for i in somelist]

– List of the first 100 triangular numbers?
ãÑ [k*(k+1)/2 for k in range(100)],

– Quickly compute a partial sum of a series? S10000 “
10000
ř

n“1
1{n2

ãÑ S = sum([1.0/(n**2) for n in range(1,10000+1)]),

– Sum of numbers below 10000 that are multiples of 11 or multiples of 7?
ãÑ sum([k for k in range(1,10000) if k%7==0 or k%11==0])

– and many more examples are possible . . .

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 12 / 36

http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Lists in Python (1/3)

Introduction to list comprehensions

Python offers a nice and efficient syntax for easily defining a list
of values obtained with an expression of one index.

What is a list comprehension? (new!)
The syntax is like this: [“expression with i” for i in somelist]

– List of the first 100 triangular numbers?
ãÑ [k*(k+1)/2 for k in range(100)],

– Quickly compute a partial sum of a series? S10000 “
10000
ř

n“1
1{n2

ãÑ S = sum([1.0/(n**2) for n in range(1,10000+1)]),

– Sum of numbers below 10000 that are multiples of 11 or multiples of 7?
ãÑ sum([k for k in range(1,10000) if k%7==0 or k%11==0])

– and many more examples are possible . . .

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 12 / 36

http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Lists in Python (1/3)

Matrices as list of lists

Matrix as list of line vectors (new!)

M “

»

–

1 2 3
4 5 6
7 8 9

fi

fl has three lines, x1 “ r1 2 3s, x2 “ r4 5 6s, x3 “ r7 8 9s.

So in Python, this matrix can be written as M = [x_1, x_2, x_3], with:
M[0]=x_1=[1, 2, 3], M[1]=x_2=[4, 5, 6], M[2]=x_3=[7, 8, 9].
M = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] is a list of 3 lists (of sizes 3).

Examples of list comprehension for matrices (new!)
– tracepM q is sum([M[i][i] for i in range(len(M))]),
– A` B is [[A[i][j] + B[i][j] for i in range(len(A))] for j

in range(len(A))] (if A and B are square),
– . . . and you will figure out Aˆ B by yourself (in this week lab).

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 13 / 36

http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Lists in Python (1/3)

Matrices as list of lists

Matrix as list of line vectors (new!)

M “

»

–

1 2 3
4 5 6
7 8 9

fi

fl has three lines, x1 “ r1 2 3s, x2 “ r4 5 6s, x3 “ r7 8 9s.

So in Python, this matrix can be written as M = [x_1, x_2, x_3], with:
M[0]=x_1=[1, 2, 3], M[1]=x_2=[4, 5, 6], M[2]=x_3=[7, 8, 9].
M = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] is a list of 3 lists (of sizes 3).

Examples of list comprehension for matrices (new!)
– tracepM q is sum([M[i][i] for i in range(len(M))]),
– A` B is [[A[i][j] + B[i][j] for i in range(len(A))] for j

in range(len(A))] (if A and B are square),
– . . . and you will figure out Aˆ B by yourself (in this week lab).

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 13 / 36

http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Lists in Python (1/3)

Matrices as list of lists

Matrix as list of line vectors (new!)

M “

»

–

1 2 3
4 5 6
7 8 9

fi

fl has three lines, x1 “ r1 2 3s, x2 “ r4 5 6s, x3 “ r7 8 9s.

So in Python, this matrix can be written as M = [x_1, x_2, x_3], with:
M[0]=x_1=[1, 2, 3], M[1]=x_2=[4, 5, 6], M[2]=x_3=[7, 8, 9].
M = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] is a list of 3 lists (of sizes 3).

Examples of list comprehension for matrices (new!)
– tracepM q is sum([M[i][i] for i in range(len(M))]),
– A` B is [[A[i][j] + B[i][j] for i in range(len(A))] for j

in range(len(A))] (if A and B are square),
– . . . and you will figure out Aˆ B by yourself (in this week lab).

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 13 / 36

http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Lists in Python (1/3)

Other data structures similar to list : tuples

About tuples
Tuples are exactly like lists,
but cannot be modified after being created:

– A tuple is an unmutable list.
– A tuple is written s = () for the empty tuple, or t = (x, y)

For example, v = (1, 0, 1) is like a vector of R3.
– Type conversion between tuples and lists can be done: with

t = tuple(mylist) and l = list(mytuple) . . . !

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 14 / 36

http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Lists in Python (1/3)

Other data structures similar to list : strings

About strings
A string is almost like a list of characters:
name = 'batman' is like ['b', 'a', 't', 'm', 'a', 'n']:

– Accessing and slicing is done the same way for strings:
name[0] is 'b', name[3:] is 'man' etc,

– Looping over a string will loop letter by letter ('b','a' etc).
– But warning: a string is unmutable!

name[0] = 'C' fails, name = 'C' + name[1:] is good

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 15 / 36

http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Lists in Python (1/3)

One example of use of a list (cf. Spyder demo)

Using a list to store values, e.g. grades of the first Mid Term Exam
The demo plots an histogram for your grades, written as a Python list:

1 # That list has 230 v a l u e s b e t w e e n 0 and 100
2 grades = [36, 73.5 , ..., 34, 56, 68, 61, 29]

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 16 / 36

http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Sets in Python (2/3)

One first example of the use of sets in Python

First CS Lab Examination : problem 1 (1/2)
For the sum of multiples of 7 or 11 below 10000, one line is enough:

sum(set(xrange(7,10000,7)) | set(xrange(11,10000,11))).

First CS Lab Examination : problem 1 (2/2)
And for the product of multiples of 3 or 5 below 30, one line also:

prod(set(xrange(3,30,3)) | set(xrange(5,30,5))).

It requires to have a function prod, easily defined like this:

1 def prod(mylist):
2 p = 1
3 for value in mylist :
4 p *= value
5 r e t u r n p

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 17 / 36

http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Sets in Python (2/3)

One first example of the use of sets in Python

First CS Lab Examination : problem 1 (1/2)
For the sum of multiples of 7 or 11 below 10000, one line is enough:

sum(set(xrange(7,10000,7)) | set(xrange(11,10000,11))).

First CS Lab Examination : problem 1 (2/2)
And for the product of multiples of 3 or 5 below 30, one line also:

prod(set(xrange(3,30,3)) | set(xrange(5,30,5))).

It requires to have a function prod, easily defined like this:

1 def prod(mylist):
2 p = 1
3 for value in mylist :
4 p *= value
5 r e t u r n p

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 17 / 36

http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Sets in Python (2/3)

Definition and concept of a set in Python

Concept of a set and definition (not new)
“A set is a (finite) unordered and mutable
collection of unique Python values.”

Goal ?
Efficiently and easily store and represent (finite) mathematical sets.
Examples: s = {} the empty set H, or u = {-1, 1}.

Limitation ?
Python has to be able to say if two elements are equal or not (to keep only
unique values).
Therefore, elements of a set need to be hashable, ie. the hash function can
be used (this will be seen later).

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 18 / 36

https://docs.python.org/2/tutorial/introduction.html#sets
http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Sets in Python (2/3)

Definition and concept of a set in Python

Concept of a set and definition (not new)
“A set is a (finite) unordered and mutable
collection of unique Python values.”

Goal ?
Efficiently and easily store and represent (finite) mathematical sets.
Examples: s = {} the empty set H, or u = {-1, 1}.

Limitation ?
Python has to be able to say if two elements are equal or not (to keep only
unique values).
Therefore, elements of a set need to be hashable, ie. the hash function can
be used (this will be seen later).

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 18 / 36

https://docs.python.org/2/tutorial/introduction.html#sets
http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Sets in Python (2/3)

Definition and concept of a set in Python

Concept of a set and definition (not new)
“A set is a (finite) unordered and mutable
collection of unique Python values.”

Goal ?
Efficiently and easily store and represent (finite) mathematical sets.
Examples: s = {} the empty set H, or u = {-1, 1}.

Limitation ?
Python has to be able to say if two elements are equal or not (to keep only
unique values).
Therefore, elements of a set need to be hashable, ie. the hash function can
be used (this will be seen later).

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 18 / 36

https://docs.python.org/2/tutorial/introduction.html#sets
http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Sets in Python (2/3)

Basic notions about sets in Python

Cardinality for a set (new!)
– len(s): cardinality of set s.

Testing membership (new!)
– x in s: test x for membership in s (x P s?).
– x not in s: test x for non-membership in s (x R s?).

Simple examples
– len({-1, 1}) is ?
– 0 in {1, 2, 3} is ?
– 'ok' not in {'ok', 'right', 'clear'} is ?

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 19 / 36

http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Sets in Python (2/3)

Basic notions about sets in Python

Cardinality for a set (new!)
– len(s): cardinality of set s.

Testing membership (new!)
– x in s: test x for membership in s (x P s?).
– x not in s: test x for non-membership in s (x R s?).

Simple examples
– len({-1, 1}) is ?
– 0 in {1, 2, 3} is ?
– 'ok' not in {'ok', 'right', 'clear'} is ?

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 19 / 36

http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Sets in Python (2/3)

Comparing sets: containing, being contained etc
Easy syntax: we use Python comparison operators: <, <=, >, >=, ==, !=.

Is other a sub-set or super-set or s (new!)
– s <= other (or s.issubset(other)): (s Ď other ?).

every element in s is in other ? (subset).
– s < other: (s Ă other ?).

s is a proper subset of other ?, ie. s <= other and s != other.
– s >= other (or s.issuperset(other)): (s Ě other ?).

every element in other is in s ? (superset).
– s > other: (s Ă other ?).

s is a proper superset of other ?, ie. s >= other and s != other.

Check if two set are disjoint (new!)
s.isdisjoint(other) is True if they have no elements in common.
Remark: s and other are disjoint ô their intersection s & other is the
empty set {}.

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 20 / 36

https://docs.python.org/2/library/stdtypes.html#set.issubset
https://docs.python.org/2/library/stdtypes.html#set.issuperset
https://docs.python.org/2/library/stdtypes.html#set.isdisjoint
http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Sets in Python (2/3)

Comparing sets: containing, being contained etc
Easy syntax: we use Python comparison operators: <, <=, >, >=, ==, !=.

Is other a sub-set or super-set or s (new!)
– s <= other (or s.issubset(other)): (s Ď other ?).

every element in s is in other ? (subset).
– s < other: (s Ă other ?).

s is a proper subset of other ?, ie. s <= other and s != other.
– s >= other (or s.issuperset(other)): (s Ě other ?).

every element in other is in s ? (superset).
– s > other: (s Ă other ?).

s is a proper superset of other ?, ie. s >= other and s != other.

Check if two set are disjoint (new!)
s.isdisjoint(other) is True if they have no elements in common.
Remark: s and other are disjoint ô their intersection s & other is the
empty set {}.

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 20 / 36

https://docs.python.org/2/library/stdtypes.html#set.issubset
https://docs.python.org/2/library/stdtypes.html#set.issuperset
https://docs.python.org/2/library/stdtypes.html#set.isdisjoint
http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Sets in Python (2/3)

Comparing sets: containing, being contained etc
Easy syntax: we use Python comparison operators: <, <=, >, >=, ==, !=.

Is other a sub-set or super-set or s (new!)
– s <= other (or s.issubset(other)): (s Ď other ?).

every element in s is in other ? (subset).
– s < other: (s Ă other ?).

s is a proper subset of other ?, ie. s <= other and s != other.
– s >= other (or s.issuperset(other)): (s Ě other ?).

every element in other is in s ? (superset).
– s > other: (s Ă other ?).

s is a proper superset of other ?, ie. s >= other and s != other.

Check if two set are disjoint (new!)
s.isdisjoint(other) is True if they have no elements in common.
Remark: s and other are disjoint ô their intersection s & other is the
empty set {}.

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 20 / 36

https://docs.python.org/2/library/stdtypes.html#set.issubset
https://docs.python.org/2/library/stdtypes.html#set.issuperset
https://docs.python.org/2/library/stdtypes.html#set.isdisjoint
http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Sets in Python (2/3)

Math. operations on sets: union, intersection etc

A complicated syntax ?
Syntax is natural here again: |, &, -, ^.

4 operations coming from maths (Y,X, z, Δ) (new!)
Create new set with elements. . . :

– s.union(other, ...) or s | other | ...
from the set s and all others. (s Y s2 Y . . .)

– s.intersection(other, ...) or s & other & ...
common to the set s and all others. (s X s2 X . . .)

– s.difference(other, ...) or s - other - ...
in the set s that are not in the others. ((szs2qzs3 . . . q)

– s.symmetric_difference(other) or s ^ other ((new!))
in either the set s or other but not both. (s Δ s2

def
“ ps Y s2qzps2 X sq)

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 21 / 36

https://docs.python.org/2/library/stdtypes.html#set.union
https://docs.python.org/2/library/stdtypes.html#set.intersection
https://docs.python.org/2/library/stdtypes.html#set.difference
https://docs.python.org/2/library/stdtypes.html#set.symmetric_difference
http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Sets in Python (2/3)

Math. operations on sets: union, intersection etc

A complicated syntax ?
Syntax is natural here again: |, &, -, ^.

4 operations coming from maths (Y,X, z, Δ) (new!)
Create new set with elements. . . :

– s.union(other, ...) or s | other | ...
from the set s and all others. (s Y s2 Y . . .)

– s.intersection(other, ...) or s & other & ...
common to the set s and all others. (s X s2 X . . .)

– s.difference(other, ...) or s - other - ...
in the set s that are not in the others. ((szs2qzs3 . . . q)

– s.symmetric_difference(other) or s ^ other ((new!))
in either the set s or other but not both. (s Δ s2

def
“ ps Y s2qzps2 X sq)

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 21 / 36

https://docs.python.org/2/library/stdtypes.html#set.union
https://docs.python.org/2/library/stdtypes.html#set.intersection
https://docs.python.org/2/library/stdtypes.html#set.difference
https://docs.python.org/2/library/stdtypes.html#set.symmetric_difference
http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Sets in Python (2/3)

Math. operations on sets: union, intersection etc

A complicated syntax ?
Syntax is natural here again: |, &, -, ^.

4 operations coming from maths (Y,X, z, Δ) (new!)
Create new set with elements. . . :

– s.union(other, ...) or s | other | ...
from the set s and all others. (s Y s2 Y . . .)

– s.intersection(other, ...) or s & other & ...
common to the set s and all others. (s X s2 X . . .)

– s.difference(other, ...) or s - other - ...
in the set s that are not in the others. ((szs2qzs3 . . . q)

– s.symmetric_difference(other) or s ^ other ((new!))
in either the set s or other but not both. (s Δ s2

def
“ ps Y s2qzps2 X sq)

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 21 / 36

https://docs.python.org/2/library/stdtypes.html#set.union
https://docs.python.org/2/library/stdtypes.html#set.intersection
https://docs.python.org/2/library/stdtypes.html#set.difference
https://docs.python.org/2/library/stdtypes.html#set.symmetric_difference
http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Sets in Python (2/3)

Math. operations on sets: union, intersection etc

A complicated syntax ?
Syntax is natural here again: |, &, -, ^.

4 operations coming from maths (Y,X, z, Δ) (new!)
Create new set with elements. . . :

– s.union(other, ...) or s | other | ...
from the set s and all others. (s Y s2 Y . . .)

– s.intersection(other, ...) or s & other & ...
common to the set s and all others. (s X s2 X . . .)

– s.difference(other, ...) or s - other - ...
in the set s that are not in the others. ((szs2qzs3 . . . q)

– s.symmetric_difference(other) or s ^ other ((new!))
in either the set s or other but not both. (s Δ s2

def
“ ps Y s2qzps2 X sq)

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 21 / 36

https://docs.python.org/2/library/stdtypes.html#set.union
https://docs.python.org/2/library/stdtypes.html#set.intersection
https://docs.python.org/2/library/stdtypes.html#set.difference
https://docs.python.org/2/library/stdtypes.html#set.symmetric_difference
http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Sets in Python (2/3)

Math. operations on sets: union, intersection etc

A complicated syntax ?
Syntax is natural here again: |, &, -, ^.

4 operations coming from maths (Y,X, z, Δ) (new!)
Create new set with elements. . . :

– s.union(other, ...) or s | other | ...
from the set s and all others. (s Y s2 Y . . .)

– s.intersection(other, ...) or s & other & ...
common to the set s and all others. (s X s2 X . . .)

– s.difference(other, ...) or s - other - ...
in the set s that are not in the others. ((szs2qzs3 . . . q)

– s.symmetric_difference(other) or s ^ other ((new!))
in either the set s or other but not both. (s Δ s2

def
“ ps Y s2qzps2 X sq)

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 21 / 36

https://docs.python.org/2/library/stdtypes.html#set.union
https://docs.python.org/2/library/stdtypes.html#set.intersection
https://docs.python.org/2/library/stdtypes.html#set.difference
https://docs.python.org/2/library/stdtypes.html#set.symmetric_difference
http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Sets in Python (2/3)

Modifying a set: union, intersection etc

5 methods for sets: (new!)
Create new set with elements. . . :

– s.add(elem) Adds element elem to the set s.
Does not change s if elem was already present!

– s.remove(elem) Removes element elem from the set s.
Raises KeyError if elem is not contained in the set.

– s.discard(elem) Removes element elem from the set s if it is present.
– s.pop() Removes and returns an arbitrary element from the set s.

Raises KeyError for an empty set. Arbitrary? Yes, there is no order!
– s.clear() Removes all elements from the set s (like s = set()).

Getting a fresh copy of a set? (new!)
s.copy() returns a new set with a fresh copy of the set s.

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 22 / 36

https://docs.python.org/2/library/stdtypes.html#set.copy
http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Sets in Python (2/3)

Modifying a set: union, intersection etc

5 methods for sets: (new!)
Create new set with elements. . . :

– s.add(elem) Adds element elem to the set s.
Does not change s if elem was already present!

– s.remove(elem) Removes element elem from the set s.
Raises KeyError if elem is not contained in the set.

– s.discard(elem) Removes element elem from the set s if it is present.
– s.pop() Removes and returns an arbitrary element from the set s.

Raises KeyError for an empty set. Arbitrary? Yes, there is no order!
– s.clear() Removes all elements from the set s (like s = set()).

Getting a fresh copy of a set? (new!)
s.copy() returns a new set with a fresh copy of the set s.

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 22 / 36

https://docs.python.org/2/library/stdtypes.html#set.copy
http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Sets in Python (2/3)

Modifying a set: union, intersection etc

5 methods for sets: (new!)
Create new set with elements. . . :

– s.add(elem) Adds element elem to the set s.
Does not change s if elem was already present!

– s.remove(elem) Removes element elem from the set s.
Raises KeyError if elem is not contained in the set.

– s.discard(elem) Removes element elem from the set s if it is present.
– s.pop() Removes and returns an arbitrary element from the set s.

Raises KeyError for an empty set. Arbitrary? Yes, there is no order!
– s.clear() Removes all elements from the set s (like s = set()).

Getting a fresh copy of a set? (new!)
s.copy() returns a new set with a fresh copy of the set s.

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 22 / 36

https://docs.python.org/2/library/stdtypes.html#set.copy
http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Sets in Python (2/3)

Modifying a set: union, intersection etc

5 methods for sets: (new!)
Create new set with elements. . . :

– s.add(elem) Adds element elem to the set s.
Does not change s if elem was already present!

– s.remove(elem) Removes element elem from the set s.
Raises KeyError if elem is not contained in the set.

– s.discard(elem) Removes element elem from the set s if it is present.
– s.pop() Removes and returns an arbitrary element from the set s.

Raises KeyError for an empty set. Arbitrary? Yes, there is no order!
– s.clear() Removes all elements from the set s (like s = set()).

Getting a fresh copy of a set? (new!)
s.copy() returns a new set with a fresh copy of the set s.

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 22 / 36

https://docs.python.org/2/library/stdtypes.html#set.copy
http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Sets in Python (2/3)

Modifying a set: union, intersection etc

5 methods for sets: (new!)
Create new set with elements. . . :

– s.add(elem) Adds element elem to the set s.
Does not change s if elem was already present!

– s.remove(elem) Removes element elem from the set s.
Raises KeyError if elem is not contained in the set.

– s.discard(elem) Removes element elem from the set s if it is present.
– s.pop() Removes and returns an arbitrary element from the set s.

Raises KeyError for an empty set. Arbitrary? Yes, there is no order!
– s.clear() Removes all elements from the set s (like s = set()).

Getting a fresh copy of a set? (new!)
s.copy() returns a new set with a fresh copy of the set s.

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 22 / 36

https://docs.python.org/2/library/stdtypes.html#set.copy
http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Sets in Python (2/3)

Modifying a set: union, intersection etc

5 methods for sets: (new!)
Create new set with elements. . . :

– s.add(elem) Adds element elem to the set s.
Does not change s if elem was already present!

– s.remove(elem) Removes element elem from the set s.
Raises KeyError if elem is not contained in the set.

– s.discard(elem) Removes element elem from the set s if it is present.
– s.pop() Removes and returns an arbitrary element from the set s.

Raises KeyError for an empty set. Arbitrary? Yes, there is no order!
– s.clear() Removes all elements from the set s (like s = set()).

Getting a fresh copy of a set? (new!)
s.copy() returns a new set with a fresh copy of the set s.

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 22 / 36

https://docs.python.org/2/library/stdtypes.html#set.copy
http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Sets in Python (2/3)

Sum-up about sets

About sets, we saw: (new!)
– concept of a set (from mathematics),
– how to define it in Python, read or modify it or its elements,
– some mathematical operations on sets (union, intersection etc),
– methods for modifying sets (add, remove, discard, etc)
– set comprehension can be used exactly as list

comprehension:
s = { (-1)**a + b/a for a in range(1,100) for b in

range(-10,10) } .
– last remark: a frozenset is an unmutable set.

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 23 / 36

https://en.wikipedia.org/wiki/Set_(mathematics)
https://docs.python.org/2/library/stdtypes.html#set
http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Conclusion of these 2 lectures (March 09th, 10th)

Thanks for listening to this part about lists and sets

Any question?
Reference websites

– www.MahindraEcoleCentrale.edu.in/portal : MEC Moodle,
– the IntroToPython.org website,
– and the Python documentation at docs.python.org/2/,

Want to know more?
ãÑ practice (by yourself) with these websites!
ãÑ and contact me (e-mail, flying pigeons, Moodle etc) if needed.

Next week will be about dictionaries in Python!
Like verbs = { 'avoir' : 'to have', 'être' : 'to be', ... }

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 24 / 36

http://http://www.mahindraecolecentrale.edu.in/portal/course/view.php?id=27
http://IntroToPython.org/
https://docs.python.org/2/
http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Dictionaries in Python (3/3)

Outline for today (16th March) Lecture 3/3

1 Presentation

2 A quick and interactive sum-up of the first two months

3 Data structures for programming cleverly (3 lectures)
Lists in Python (1/3)
Sets in Python (2/3)
Dictionaries in Python (3/3)

4 Sum-um about data structures : lists, sets, and dicts

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 25 / 36

http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Dictionaries in Python (3/3)

Definition and concept of a dictionary in Python

Concept of a dictionnary and definition (new!)
“A dictionary is an associative table, ie. an
unordered collection of pairs key : value.”

Goal ?
Easily store connected bits of information.
For example, you might store your name, section and roll number together:
hero = {'name' : 'Luke S.', 'section' : 'A1', 'roll' : 438}.

Sets and dicts have a similar limitation
The keys should be hashable, so only one value can be associated with a key.
As for elements of a set, keys of a dict need to have a __hash__ method.

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 26 / 36

https://docs.python.org/2/library/stdtypes.html?highlight=dict#mapping-types-dict
http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Dictionaries in Python (3/3)

Definition and concept of a dictionary in Python

Concept of a dictionnary and definition (new!)
“A dictionary is an associative table, ie. an
unordered collection of pairs key : value.”

Goal ?
Easily store connected bits of information.
For example, you might store your name, section and roll number together:
hero = {'name' : 'Luke S.', 'section' : 'A1', 'roll' : 438}.

Sets and dicts have a similar limitation
The keys should be hashable, so only one value can be associated with a key.
As for elements of a set, keys of a dict need to have a __hash__ method.

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 26 / 36

https://docs.python.org/2/library/stdtypes.html?highlight=dict#mapping-types-dict
http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Dictionaries in Python (3/3)

Definition and concept of a dictionary in Python

Concept of a dictionnary and definition (new!)
“A dictionary is an associative table, ie. an
unordered collection of pairs key : value.”

Goal ?
Easily store connected bits of information.
For example, you might store your name, section and roll number together:
hero = {'name' : 'Luke S.', 'section' : 'A1', 'roll' : 438}.

Sets and dicts have a similar limitation
The keys should be hashable, so only one value can be associated with a key.
As for elements of a set, keys of a dict need to have a __hash__ method.

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 26 / 36

https://docs.python.org/2/library/stdtypes.html?highlight=dict#mapping-types-dict
http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Dictionaries in Python (3/3)

Two first examples of dictionaries in Python

Description of courses?
Associating an adjective to the name of a course:

d = {'CS101' : 'awesome', 'MA102' : 'good', 'CB101' : 'cooking',
'HS103' : 'tiring!'}

A dictionary is like a generalized list, for which the keys were just
0, 1, . . . , n-1 (and the order matters).
The order does not matter for a dictionary!

Some French verbs and their definition (like a real dictionary)
verbs = { 'avoir' : 'to have', 'être' : 'to be', ... }

Online reference (for practicing)
ÝÑ introtopython.org/dictionaries.html ÐÝ

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 27 / 36

http://introtopython.org/dictionaries.html
http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Dictionaries in Python (3/3)

Two first examples of dictionaries in Python

Description of courses?
Associating an adjective to the name of a course:

d = {'CS101' : 'awesome', 'MA102' : 'good', 'CB101' : 'cooking',
'HS103' : 'tiring!'}

A dictionary is like a generalized list, for which the keys were just
0, 1, . . . , n-1 (and the order matters).
The order does not matter for a dictionary!

Some French verbs and their definition (like a real dictionary)
verbs = { 'avoir' : 'to have', 'être' : 'to be', ... }

Online reference (for practicing)
ÝÑ introtopython.org/dictionaries.html ÐÝ

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 27 / 36

http://introtopython.org/dictionaries.html
http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Dictionaries in Python (3/3)

Two first examples of dictionaries in Python

Description of courses?
Associating an adjective to the name of a course:

d = {'CS101' : 'awesome', 'MA102' : 'good', 'CB101' : 'cooking',
'HS103' : 'tiring!'}

A dictionary is like a generalized list, for which the keys were just
0, 1, . . . , n-1 (and the order matters).
The order does not matter for a dictionary!

Some French verbs and their definition (like a real dictionary)
verbs = { 'avoir' : 'to have', 'être' : 'to be', ... }

Online reference (for practicing)
ÝÑ introtopython.org/dictionaries.html ÐÝ

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 27 / 36

http://introtopython.org/dictionaries.html
http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Dictionaries in Python (3/3)

Basic notions about dicts in Python

Size or length of a dict (new!)
– len(d) : size of the dict d (ie. number of pairs key : value).

Reading the value attached to a key (new!)
Same syntax for lists and dicts, but indexing is done with the keys:

– d[key]: try to read the value paired with the key.
Raises KeyError if the key is not used in the dictionary.

– d.has_key(key) or key in d: True if the key is used, False otherwise.

Simple examples (Question: what is d[k] here?)
If d = {0:[], 1:[1], 5:[1, 5], 12:[1, 2, 3, 4, 6, 12]}:

– len(d) is ?
– d[0] is ?, d[2] is ?, d[5] is ?.
– 0 in d is ?, 2 in d is ?, 12 not in d is ?, 5 not in d is ?.
– d[k] can also be modified: d[0] = 42 will change the dictionary d.

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 28 / 36

http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Dictionaries in Python (3/3)

Basic notions about dicts in Python

Size or length of a dict (new!)
– len(d) : size of the dict d (ie. number of pairs key : value).

Reading the value attached to a key (new!)
Same syntax for lists and dicts, but indexing is done with the keys:

– d[key]: try to read the value paired with the key.
Raises KeyError if the key is not used in the dictionary.

– d.has_key(key) or key in d: True if the key is used, False otherwise.

Simple examples (Question: what is d[k] here?)
If d = {0:[], 1:[1], 5:[1, 5], 12:[1, 2, 3, 4, 6, 12]}:

– len(d) is ?
– d[0] is ?, d[2] is ?, d[5] is ?.
– 0 in d is ?, 2 in d is ?, 12 not in d is ?, 5 not in d is ?.
– d[k] can also be modified: d[0] = 42 will change the dictionary d.

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 28 / 36

http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Dictionaries in Python (3/3)

Basic notions about dicts in Python

Size or length of a dict (new!)
– len(d) : size of the dict d (ie. number of pairs key : value).

Reading the value attached to a key (new!)
Same syntax for lists and dicts, but indexing is done with the keys:

– d[key]: try to read the value paired with the key.
Raises KeyError if the key is not used in the dictionary.

– d.has_key(key) or key in d: True if the key is used, False otherwise.

Simple examples (Question: what is d[k] here?)
If d = {0:[], 1:[1], 5:[1, 5], 12:[1, 2, 3, 4, 6, 12]}:

– len(d) is ?
– d[0] is ?, d[2] is ?, d[5] is ?.
– 0 in d is ?, 2 in d is ?, 12 not in d is ?, 5 not in d is ?.
– d[k] can also be modified: d[0] = 42 will change the dictionary d.

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 28 / 36

http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Dictionaries in Python (3/3)

Basic notions about dicts in Python

Size or length of a dict (new!)
– len(d) : size of the dict d (ie. number of pairs key : value).

Reading the value attached to a key (new!)
Same syntax for lists and dicts, but indexing is done with the keys:

– d[key]: try to read the value paired with the key.
Raises KeyError if the key is not used in the dictionary.

– d.has_key(key) or key in d: True if the key is used, False otherwise.

Simple examples (Question: what is d[k] here?)
If d = {0:[], 1:[1], 5:[1, 5], 12:[1, 2, 3, 4, 6, 12]}:

– len(d) is ?
– d[0] is ?, d[2] is ?, d[5] is ?.
– 0 in d is ?, 2 in d is ?, 12 not in d is ?, 5 not in d is ?.
– d[k] can also be modified: d[0] = 42 will change the dictionary d.

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 28 / 36

http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Dictionaries in Python (3/3)

One “real-world” example of a dictionary

Demo of a Windows .exe program written in Python
This demo is a fun way to browse through your photos (from your ID cards).
It uses a database of your batch, written internally as a Python dictionary.
Keys are roll numbers, and each value is itself a dictionary (nested dicts!):

Example with the first student of the list:

1 students = {
2 " 14 X J 0 0 0 0 0 " : {
3 " na me " : " Brad Pi tt " ,
4 " b r a n c h " : " ME " ,
5 " c o u n s e l l o r " : " E d w a r d N o r t o n " ,
6 " e m a i l a d d r e s s " : " b . p i t t @ f i g h t . club " ,
7 " g r o u p " : " A0 " ,
8 " r o l l n u m b e r " : " 14 X J 0 0 0 0 0 "
9 },

10 # ... t h e r e is 230 more s t u d e n t s like this !
11 }

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 29 / 36

http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Dictionaries in Python (3/3)

One “real-world” example of a dictionary

Demo of a Windows .exe program written in Python
This demo is a fun way to browse through your photos (from your ID cards).
It uses a database of your batch, written internally as a Python dictionary.
Keys are roll numbers, and each value is itself a dictionary (nested dicts!):

Example with the first student of the list:

1 students = {
2 " 14 X J 0 0 0 0 0 " : {
3 " na me " : " Brad Pi tt " ,
4 " b r a n c h " : " ME " ,
5 " c o u n s e l l o r " : " E d w a r d N o r t o n " ,
6 " e m a i l a d d r e s s " : " b . p i t t @ f i g h t . club " ,
7 " g r o u p " : " A0 " ,
8 " r o l l n u m b e r " : " 14 X J 0 0 0 0 0 "
9 },

10 # ... t h e r e is 230 more s t u d e n t s like this !
11 }

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 29 / 36

http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Dictionaries in Python (3/3)

Several approaches to create a dict

Python offers different syntaxes for creating a dictionary.
To illustrate, the following examples all return a dictionary equal to
{'one' : 1, 'two' : 2, 'three' : 3}

4 examples (new!)
– a = {'two' : 2, 'one' : 1, 'three' : 3} is the best syntax,
– b = dict(one=1, two=2, three=3) uses dict as a function with

keyword arguments (argument one has value 1, two has value 2 etc),
– c = dict([('two', 2), ('one', 1), ('three', 3)]) from a list of

pairs (key, value),
– d = dict(zip(['one', 'two', 'three'], [1, 2, 3])) with the zip

function.

Four way to define a dict?
With the above 4 commands, a == b == c == d is True.

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 30 / 36

http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Dictionaries in Python (3/3)

Several approaches to create a dict

Python offers different syntaxes for creating a dictionary.
To illustrate, the following examples all return a dictionary equal to
{'one' : 1, 'two' : 2, 'three' : 3}

4 examples (new!)
– a = {'two' : 2, 'one' : 1, 'three' : 3} is the best syntax,
– b = dict(one=1, two=2, three=3) uses dict as a function with

keyword arguments (argument one has value 1, two has value 2 etc),
– c = dict([('two', 2), ('one', 1), ('three', 3)]) from a list of

pairs (key, value),
– d = dict(zip(['one', 'two', 'three'], [1, 2, 3])) with the zip

function.

Four way to define a dict?
With the above 4 commands, a == b == c == d is True.

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 30 / 36

http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Dictionaries in Python (3/3)

Several approaches to create a dict

Python offers different syntaxes for creating a dictionary.
To illustrate, the following examples all return a dictionary equal to
{'one' : 1, 'two' : 2, 'three' : 3}

4 examples (new!)
– a = {'two' : 2, 'one' : 1, 'three' : 3} is the best syntax,
– b = dict(one=1, two=2, three=3) uses dict as a function with

keyword arguments (argument one has value 1, two has value 2 etc),
– c = dict([('two', 2), ('one', 1), ('three', 3)]) from a list of

pairs (key, value),
– d = dict(zip(['one', 'two', 'three'], [1, 2, 3])) with the zip

function.

Four way to define a dict?
With the above 4 commands, a == b == c == d is True.

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 30 / 36

http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Dictionaries in Python (3/3)

Several approaches to create a dict

Python offers different syntaxes for creating a dictionary.
To illustrate, the following examples all return a dictionary equal to
{'one' : 1, 'two' : 2, 'three' : 3}

4 examples (new!)
– a = {'two' : 2, 'one' : 1, 'three' : 3} is the best syntax,
– b = dict(one=1, two=2, three=3) uses dict as a function with

keyword arguments (argument one has value 1, two has value 2 etc),
– c = dict([('two', 2), ('one', 1), ('three', 3)]) from a list of

pairs (key, value),
– d = dict(zip(['one', 'two', 'three'], [1, 2, 3])) with the zip

function.

Four way to define a dict?
With the above 4 commands, a == b == c == d is True.

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 30 / 36

http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Dictionaries in Python (3/3)

Several approaches to create a dict

Python offers different syntaxes for creating a dictionary.
To illustrate, the following examples all return a dictionary equal to
{'one' : 1, 'two' : 2, 'three' : 3}

4 examples (new!)
– a = {'two' : 2, 'one' : 1, 'three' : 3} is the best syntax,
– b = dict(one=1, two=2, three=3) uses dict as a function with

keyword arguments (argument one has value 1, two has value 2 etc),
– c = dict([('two', 2), ('one', 1), ('three', 3)]) from a list of

pairs (key, value),
– d = dict(zip(['one', 'two', 'three'], [1, 2, 3])) with the zip

function.

Four way to define a dict?
With the above 4 commands, a == b == c == d is True.

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 30 / 36

http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Dictionaries in Python (3/3)

Looping over dicts

An easy syntax !
Syntax is natural, similar to for loops with lists:

1 for k in mydict :
2 # s o m e t h i n g here can be done
3 # w ith k as the key , m y d i c t [k] as the v a l u e

3 ways of looping over a dictionary (new!)
– looping over the keys: for k in mydict.

The key k can be used, and mydict[k] can be used or modified.
– looping over the values: for v in mydict.values().

The value v can be used, but modifying v does not modify mydict!
– looping over the pairs of (key, value): for k, v in mydict.items().

This is the more general method.

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 31 / 36

http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Dictionaries in Python (3/3)

Looping over dicts

An easy syntax !
Syntax is natural, similar to for loops with lists:

1 for k in mydict :
2 # s o m e t h i n g here can be done
3 # w ith k as the key , m y d i c t [k] as the v a l u e

3 ways of looping over a dictionary (new!)
– looping over the keys: for k in mydict.

The key k can be used, and mydict[k] can be used or modified.
– looping over the values: for v in mydict.values().

The value v can be used, but modifying v does not modify mydict!
– looping over the pairs of (key, value): for k, v in mydict.items().

This is the more general method.

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 31 / 36

http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Dictionaries in Python (3/3)

Looping over dicts

An easy syntax !
Syntax is natural, similar to for loops with lists:

1 for k in mydict :
2 # s o m e t h i n g here can be done
3 # w ith k as the key , m y d i c t [k] as the v a l u e

3 ways of looping over a dictionary (new!)
– looping over the keys: for k in mydict.

The key k can be used, and mydict[k] can be used or modified.
– looping over the values: for v in mydict.values().

The value v can be used, but modifying v does not modify mydict!
– looping over the pairs of (key, value): for k, v in mydict.items().

This is the more general method.

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 31 / 36

http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Dictionaries in Python (3/3)

Looping over dicts

An easy syntax !
Syntax is natural, similar to for loops with lists:

1 for k in mydict :
2 # s o m e t h i n g here can be done
3 # w ith k as the key , m y d i c t [k] as the v a l u e

3 ways of looping over a dictionary (new!)
– looping over the keys: for k in mydict.

The key k can be used, and mydict[k] can be used or modified.
– looping over the values: for v in mydict.values().

The value v can be used, but modifying v does not modify mydict!
– looping over the pairs of (key, value): for k, v in mydict.items().

This is the more general method.

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 31 / 36

http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Dictionaries in Python (3/3)

Removing keys or values from a dictionary

One trick and 3 methods for dicts: (new!)
Remove values or keys from a dict:

– d.pop(k) removes and returns the value associated with they key k.
Raises KeyError if the key is not in the dict.

– same as del d[k]: the del command is used to delete the value d[k].
– d.popitem() removes and returns an arbitrary pair key : value from

the dict d.
Raises KeyError for an empty dict. Arbitrary? Yes, there is no order!

– d.clear() removes all elements from the dict d (like doing d = {}).

Getting a fresh copy of a dict? (new!)
d.copy() returns a new dict with a fresh copy of the dict d.

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 32 / 36

https://docs.python.org/2/library/stdtypes.html#dict.copy
http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Dictionaries in Python (3/3)

Removing keys or values from a dictionary

One trick and 3 methods for dicts: (new!)
Remove values or keys from a dict:

– d.pop(k) removes and returns the value associated with they key k.
Raises KeyError if the key is not in the dict.

– same as del d[k]: the del command is used to delete the value d[k].
– d.popitem() removes and returns an arbitrary pair key : value from

the dict d.
Raises KeyError for an empty dict. Arbitrary? Yes, there is no order!

– d.clear() removes all elements from the dict d (like doing d = {}).

Getting a fresh copy of a dict? (new!)
d.copy() returns a new dict with a fresh copy of the dict d.

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 32 / 36

https://docs.python.org/2/library/stdtypes.html#dict.copy
http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Dictionaries in Python (3/3)

Removing keys or values from a dictionary

One trick and 3 methods for dicts: (new!)
Remove values or keys from a dict:

– d.pop(k) removes and returns the value associated with they key k.
Raises KeyError if the key is not in the dict.

– same as del d[k]: the del command is used to delete the value d[k].
– d.popitem() removes and returns an arbitrary pair key : value from

the dict d.
Raises KeyError for an empty dict. Arbitrary? Yes, there is no order!

– d.clear() removes all elements from the dict d (like doing d = {}).

Getting a fresh copy of a dict? (new!)
d.copy() returns a new dict with a fresh copy of the dict d.

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 32 / 36

https://docs.python.org/2/library/stdtypes.html#dict.copy
http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Dictionaries in Python (3/3)

Removing keys or values from a dictionary

One trick and 3 methods for dicts: (new!)
Remove values or keys from a dict:

– d.pop(k) removes and returns the value associated with they key k.
Raises KeyError if the key is not in the dict.

– same as del d[k]: the del command is used to delete the value d[k].
– d.popitem() removes and returns an arbitrary pair key : value from

the dict d.
Raises KeyError for an empty dict. Arbitrary? Yes, there is no order!

– d.clear() removes all elements from the dict d (like doing d = {}).

Getting a fresh copy of a dict? (new!)
d.copy() returns a new dict with a fresh copy of the dict d.

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 32 / 36

https://docs.python.org/2/library/stdtypes.html#dict.copy
http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Dictionaries in Python (3/3)

Converting these 3 data structures with each other
As always in Python, it is easy to convert1 values to other data-types.

Creating a list. . . with the function list!
The function list can be applied to tuples, strings, sets and dicts.

Creating a set. . . with the function set!
The function set can be applied to lists, tuples, strings and dicts.

Creating a dict. . . with the function dict!
The function dict can be applied to lists, tuples or sets of pairs (key,
value).

Examples of each functions
Examples: on the IPython console.
I will try to give examples with list, sets and dicts comprehension also!

1You will see soon that in fact we operate on an object, instance of a class, changed to be
instance of another class.

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 33 / 36

http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Dictionaries in Python (3/3)

Converting these 3 data structures with each other
As always in Python, it is easy to convert1 values to other data-types.

Creating a list. . . with the function list!
The function list can be applied to tuples, strings, sets and dicts.

Creating a set. . . with the function set!
The function set can be applied to lists, tuples, strings and dicts.

Creating a dict. . . with the function dict!
The function dict can be applied to lists, tuples or sets of pairs (key,
value).

Examples of each functions
Examples: on the IPython console.
I will try to give examples with list, sets and dicts comprehension also!

1You will see soon that in fact we operate on an object, instance of a class, changed to be
instance of another class.

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 33 / 36

http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Dictionaries in Python (3/3)

Converting these 3 data structures with each other
As always in Python, it is easy to convert1 values to other data-types.

Creating a list. . . with the function list!
The function list can be applied to tuples, strings, sets and dicts.

Creating a set. . . with the function set!
The function set can be applied to lists, tuples, strings and dicts.

Creating a dict. . . with the function dict!
The function dict can be applied to lists, tuples or sets of pairs (key,
value).

Examples of each functions
Examples: on the IPython console.
I will try to give examples with list, sets and dicts comprehension also!

1You will see soon that in fact we operate on an object, instance of a class, changed to be
instance of another class.

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 33 / 36

http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Dictionaries in Python (3/3)

Converting these 3 data structures with each other
As always in Python, it is easy to convert1 values to other data-types.

Creating a list. . . with the function list!
The function list can be applied to tuples, strings, sets and dicts.

Creating a set. . . with the function set!
The function set can be applied to lists, tuples, strings and dicts.

Creating a dict. . . with the function dict!
The function dict can be applied to lists, tuples or sets of pairs (key,
value).

Examples of each functions
Examples: on the IPython console.
I will try to give examples with list, sets and dicts comprehension also!

1You will see soon that in fact we operate on an object, instance of a class, changed to be
instance of another class.

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 33 / 36

http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Data structures for programming cleverly (3 lectures) Dictionaries in Python (3/3)

Sum-up about dicts

About dicts, we saw: (new!)
– concept of a dictionary (it is an associative array),
– how to define it in Python, and basically read or modify it or its elements,
– 3 different ways of looping over a dict: loop over the keys, or the values,

or both,
– it is easy to convert between lists, sets, and dicts,
– dict comprehension can be used exactly as list comprehension:

roots = { i**3 : i for i in xrange(4) } ,
– there is more methods for modifying dicts (get, update, setdefault, etc)
– last remark: there is no unmutable counterpart of a dict

(like tuples for lists or frozensets for sets).

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 34 / 36

https://en.wikipedia.org/wiki/Associative_array
https://docs.python.org/2/library/stdtypes.html#dict
http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Sum-um about data structures : lists, sets, and dicts Small sum-up about lists, sets, dicts

Quick reminders (if we have time)

Lists (and tuples) (1/3) Ordered collection of any objects
– one last small example mylist = [1, 3, 5], mytuple = (2, 6),
– a list is mutable (mylist[0] = 3 is OK), a tuple is not,
– qualities: simple to use, many functions/methods, easy to loop or modify.

Sets (2/3) Unordered collection of unique elements
– one last small example myset = {-1, 1},
– qualities: efficiently deal with finite sets (especially with set

comprehension), operations on sets are exactly coming from maths.

Dictionaries (3/3) Unordered collection of pairs of unique (key : value)
– one last small example

wines = {'red' : 'tasty', 'white' : 'sweet',
'champagne' : 'party time!'},

– qualities: simple to store connected bits of information, easy to
manipulate and loop over.

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 35 / 36

http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Sum-um about data structures : lists, sets, and dicts Small sum-up about lists, sets, dicts

Quick reminders (if we have time)

Lists (and tuples) (1/3) Ordered collection of any objects
– one last small example mylist = [1, 3, 5], mytuple = (2, 6),
– a list is mutable (mylist[0] = 3 is OK), a tuple is not,
– qualities: simple to use, many functions/methods, easy to loop or modify.

Sets (2/3) Unordered collection of unique elements
– one last small example myset = {-1, 1},
– qualities: efficiently deal with finite sets (especially with set

comprehension), operations on sets are exactly coming from maths.

Dictionaries (3/3) Unordered collection of pairs of unique (key : value)
– one last small example

wines = {'red' : 'tasty', 'white' : 'sweet',
'champagne' : 'party time!'},

– qualities: simple to store connected bits of information, easy to
manipulate and loop over.

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 35 / 36

http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Sum-um about data structures : lists, sets, and dicts Small sum-up about lists, sets, dicts

Quick reminders (if we have time)

Lists (and tuples) (1/3) Ordered collection of any objects
– one last small example mylist = [1, 3, 5], mytuple = (2, 6),
– a list is mutable (mylist[0] = 3 is OK), a tuple is not,
– qualities: simple to use, many functions/methods, easy to loop or modify.

Sets (2/3) Unordered collection of unique elements
– one last small example myset = {-1, 1},
– qualities: efficiently deal with finite sets (especially with set

comprehension), operations on sets are exactly coming from maths.

Dictionaries (3/3) Unordered collection of pairs of unique (key : value)
– one last small example

wines = {'red' : 'tasty', 'white' : 'sweet',
'champagne' : 'party time!'},

– qualities: simple to store connected bits of information, easy to
manipulate and loop over.

Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 35 / 36

http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

Sum-um about data structures : lists, sets, and dicts Conclusion of these 3 lectures

Thanks for listening to this lecture about dictionaries

Any question?
Reference websites

– www.MahindraEcoleCentrale.edu.in/portal : MEC Moodle,
– the IntroToPython.org website,
– and the Python documentation at docs.python.org/2/,

Want to know more?
ãÑ practice by yourself with these websites !
ãÑ and contact me (e-mail, flying pigeons, Moodle etc) if needed
ãÑ or read the “Python in Easy Steps” book on Python, or the

“Introduction to Algorithms” (Cormen) for concepts of data structures.

Next lectures: modules, OOP and exceptions by Prof. Vipin
Lilian Besson (MEC) CS101 lectures : part 3 March 16th, 2015 36 / 36

http://http://www.mahindraecolecentrale.edu.in/portal/course/view.php?id=27
http://IntroToPython.org/
https://docs.python.org/2/
http://perso.crans.org/besson
http://www.MahindraEcoleCentrale.edu.in/

	Presentation
	A quick and interactive sum-up of the first two months
	A game in Python ? 3 minutes of fun!

	Data structures for programming cleverly (3 lectures)
	Lists in Python (1/3)
	Sets in Python (2/3)
	Dictionaries in Python (3/3)

	Sum-um about data structures : lists, sets, and dicts

