
Mahindra École Centrale

CS101 Lab-14
Object Oriented Programming Basics

Aim

This lab will introduce you the basics of Object Oriented Programming (OOP). You will learn to create
classes and instantiating them to create objects. Later you will use object methods for different operations
on them.
We will try to develop a simple banking software. After analysing the requirements, it is decided that
two basic classes namely customer and account will be used in the software.

Outcome

At the end of this lab students are expected to be familiar with creating classes and objects, and using
their data and function attributes. You will also learn dynamically creating and destroying objects based
on the operating environment.

Tasks

Task-1 Creating the customer class

The customer class should have data attributes to store customer name, Dob, address and a list of his
accounts. The name, Dob, and address attributes should be assigned within the init method. The
class should also have functions to change the customer address and add or remove accounts.
At this point you can declare an empty dictionary inside the consumer class for storing the
accounts. The functions for adding and removing accounts can assume the argument to
these functions is a dictionary key. Then use regular dictionary methods to add or remove
items. What will be the values, we will see in the next section. For the time being, assign
some dummy value. You can use the del function or the pop method to delete a dictionary
item.

Task-2 Creating the account class

Now you can create the account class. The class should have an account number and balance attributes
and should be initialised within the init function. It should accept the account number and the initial
deposit as the initialisation arguments. The class should also have functions to deposit, withdraw and
calculate interest. Both the deposit and withdraw functions should return the present balance in the
account as the return value and the calc interest function should return the interest received and the
balance. The interest rate for the account should be declared as class data attribute (ie. outside all the
functions). You can assume that interest paid is simple interest at half yearly based (i.e. n=0.5) on the
current balance.

1 class account ():

2 int_rate = 0.09

3 def __init__(self ,accnt_num ,init_deposite):

4 .

5 .

Now go back to the customer class. The values of the dictionary used to store the customer
accounts are objects of account class. It means whenever the function to add an account is invoked,
it should create an object of type account and add to the dictionary with the key as the account number
and the value as the new object created. Since the account class requires initial deposit in its init

function, the add account function should also have it as an argument.
Finally save the file containing these classes as a Python module and open a new file for the next

task.

1



Task-3 Front end

Now let us make the user (operator) interface for our software. This will be your main programme which
will be using the classes that we created earlier. For this you have to import the module containing
the classes that we saved before. At first the interface should show a menu for the operator with the
following options.

1. Add a new customer

2. Remove customer

3. Add a new account

4. Remove an account

5. Deposit to an account

6. Withdraw from an account

7. Calculate interest for all customers

8. Change interest rate

Clue: Just print these options on the screen
Now the system should wait for the operator input.

Clue: input() with out a message?
After this based on the operator input, the system should take the corresponding actions. It can also
check whether any option which is not listed is entered and print an error message.

Clue: if-elif-else ?
For example if the operator selects to add a new customer, system should ask details regarding the
customer name, date of birth, address etc. Then create an object from the customer class and pass
these information as the arguments. Every customer can be stored in a dictionary, with the
customer name as the key and the object as the value .

1 .

2 .

3 customers = {} # Empty d i c t i o n a r y

4 get the customer name and details

5 customers[customer_name] = customer(customer_name ,dob ,address) #←˒
Creating the object and adding to the d i c t i o n a r y

6 .

7 .

When a new account has to be added, the system should ask for the customer name, who will be linked
with this account and the initial deposit. Then call the customer object method to add the account. You
can use a variable to generate account number, which will be incremented each time after a new account
is created. Similarly for removing an account, ask for the customer name, then list all the account
numbers linked with this customer to help the operator. This could be a little bit long instruction
such as customers dictionary[customer].accounts dictionary.keys() Now wait for the operator
to enter the account number and call the remove account method from the customer object using this
account number. Similar logic can be used for depositing and withdrawing from accounts.

When the calculate interest option is selected, interest should be calculated for every account belong-
ing to each customer and printout each account’s present balance and interest earned. When you change
the interest rate, remember to access it as a class attribute rather than an object attribute.

Finally put your whole code (except the customer dictionary and account number initialisation) inside
an infinite loop, so that after a menu item is processed, the system again displays the menu.

2


