
Mahindra École Centrale

CS101 Lab-13
Modules and Packages

Aim

The main aim of this lab is to introduce modular programming in Python. Different ways of importing
namespace from modules will be introduced. Some built-in modules in Python will be introduced. Using
dir() function to find the functions and attributes of a module. Finally introduction to packages, which
contains multiple modules for efficient modular programming.

Outcome

At the end of this lab students are expected to be familiar with creating and using modules and packages
for efficient programming.

Prerequisites

Students are expected to have completed all the tasks related to matrix operations (addition, multipli-
cation etc.) and saved their programme.

Tasks

Task-1 Creating a module

A module in Python is nothing but a file containing variable and function definitions. In that sense, every
Python file is also a module. Go ahead and create your first module in Python, matrix. For this copy
paste all the functions you have written for matrix operations into a new file and save it as matrix.py.
Do not forget to add the extension .py whenever you are creating a module. You can add two or three
additional functions into the module such as finding the trace of a matrix, checking whether a matrix is
square, checking whether a matrix is identity matrix and finding the transpose of a matrix.

Task-2 Importing a module

Use different methods to import a module and its namespace. For this, open a new Python file and
save it as main.py. Try to execute the functions in the matrix module by importing them in the main
module.

1 import matrix

2 A = [[1,2,3],[4,5,6],[7,8,9]]

3 B = [[3,4,3],[4,7,2],[5,6,10]]

4 print matrix.matrix_mult(A,B) # m a t r i x _ m u l t is a ←↩
function defined in matrix for m u l t i p l i c a t i o n

1 from matrix import matrix_mult

2 A = [[1,2,3],[4,5,6],[7,8,9]]

3 B = [[3,4,3],[4,7,2],[5,6,10]]

4 print matrix_mult(A,B) # m a t r i x _ m u l t is a function ←↩
defined in matrix for m u l t i p l i c a t i o n

5 print matrix_add(A,B) # m a t r i x _ a d d is a function in ←↩
matrix for addition

Note: Your console remembers all the code you executed before. Hence please close the
console each time before trying a different import style.

Will the second function call will give any error? Why?

1



1 from matrix import matrix_mult as my_mat_mult

2 print my_mat_mult(A,B) # m a t r i x _ m u l t is a function ←↩
defined in matrix for m u l t i p l i c a t i o n

1 from matrix import matrix_mult as matrix_mult

2 print matrix_mult(A,B) # m a t r i x _ m u l t is a function ←↩
defined in matrix for m u l t i p l i c a t i o n

Now import the built-in random module also into the main.py. Generate random matrices with the help
of the random.randint() function then use the multiplication function in the matrix module to multiply
them.

Task-3 Exploring modules

Use the dir() function to explore the attributes and functions in a module (Use the console).

1 import matrix

2 dir (matrix)

Use the same function to explore the built-in Python modules os,sys and math. Find the path attribute
in the sys module. It lists all the paths where Python searches for a module when it encounters the import
statement. Copy your matrix.py module and paste it inside the D:\ drive and rename as matrix1.py.
Now try

1 import matrix1

Any error is coming? Why? Add D:\ to the module search path and try to import the module again.
Clue: sys.path is a list of strings. How will add a new element to an existing list?

Task-4 Executing modules as a script

Add this line as the last statement in the matrix.py module.

1 print ' This is matrix module , now my name is ',__name__

Now run the matrix.py file (not main.py). What output are you seeing? Now run the main.py module
(matrix should be imported in main). Are you observing any difference in the print? Now add this line
to your main.py file.

1 print ' This is main module , now my name is ',__name__

What do you observe? What do you think about the name given to a module by the Python interpreter
when it is executed as the top file and when it is imported?
Now there is a requirement. If the matrix module is executed as the top file, it has to generate two
random matrices and multiply them. If it is imported to another module, this should not happen. How
will you do it?

Clue: You can use the name attribute to find whether a module is executed as top
file or is imported.

Task-5 Packages

Create a new folder my package inside the folder where you have saved the main.py file. Copy paste
your matrix.py file inside this new folder and rename it as my matrix.py. Now try to import it in the
main module.

1 import my_package.my_matrix

Are you observing any error? Create an empty file init .py inside the my package folder. Now run
the main.py again. Here my package is a package and my matrix.py is a sub-module. Create one more
sub-module called my circle.py which contains functions to calculate the area and perimeter of a circule.

2



Use the math module to get the pi value. Use different methods to import functions from a submodule
to the main.py module.

1 import my_package.my_matrix

2 print my_package.my_matrix.matrix_mult(A,B)

1 from my_package.my_matrix import matrix_mult

2 print matrix_mult(A,B)

1 from my_package import my_matrix.matrix_mult

2 print matrix.matrix_mult(A,B)

1 from my_package import my_matrix.matrix_mult as my_matrix_mult

2 print my_matrix_mult(A,B)

Try to import my circle module inside the my matrix module and vice-versa. Print the names of the
imported modules.

3


