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1 Mealy Machines
Exercise 1 (True or False?). For each of the following functions, decide whether they can be realized by a Mealy Machine.
In positive cases, provide the Mealy Machine, in negative cases, provide a proof that it cannot be realized.

□ The function lowercase : Σ∗ → Σ∗ , whereΣ is the latin alphabet, that maps a wordw to its lowercase variant. For
instance, lowercase(aAbcDA) = aabcda.

□ The function expandtabs : Σ∗ → Σ∗ that works on the alphabet Σ of ASCII characters, and replaces the tab
codepoint \t by four spaces codepoints.

□ The functionw 7→ c|w|a .

□ The function sort : Σ∗ → Σ∗ that sorts its input, whereΣ is a finite alphabet equipped with a total ordering≤.

□ The function∆: Σ∗ → Σ∗ that maps u to uu.

□ The function swap : Σ∗ → Σ∗ that maps au to ua and ε to ε.

□ The function swap2 : Σ
∗ → Σ∗ that maps ua to au and ε to ε.

What are the extensions of Mealy Machines for which the above functions are computable? Among the above functions,
which ones are continuous for the regular topology?

Exercise 2 (Arithmetic Circuits). The goal of this exercise is to prove that operations on binary numbers are possible. To that
end we have to provide an encoding of tuples numbers, which we do as follows: a tuple (n1, . . . , nk) ∈ Nk is represented
on the alphabet {0, 1}k by writing the numbers in binary, and padding them with zeros so that the length matches. There
are four variants of this encoding, obtained by deciding whether to pad on the left or the right, andwhether to write numbers
with the most significant bit on the left or the right.

1. For each of the four possible encodings, decide whether the map (+): N2 → N can be represented using a Mealy
Machine.

2. For each of the four possible encodings, decide whether the map (/3) : N → N can be represented using a Mealy
Machine.
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3. Write a Mealy Machine that computes (n, 4n) in binary.

4. Deduce a Mealy Machine that computes 5n in binary by using the wreath product construction and the construction
of the addition.

Exercise 3 (Bonus: Presburger Arithmetic). Prove that Presburger Arithmetic is decidable.
▷ Hint 1
▷ Hint 2

Exercise 4 (Flip Flop Machines). Prove that every flip-flop machine can be obtained by composing binary flip-flop ma-
chines. What is the number of intermediate machines that are needed?

▷ Hint 3
▷ Hint 4
▷ Hint 5

Exercise 5 (Regularity of Mealy Machines). The goal of this exercise is to understand the relationship between Mealy
Machines and regular languages. Let f : Σ∗ → Γ∗ be a function computed by a Mealy Machine.

1. Prove that the image ofΣ∗ through f is a regular language.

2. Prove that the pre-image of Γ∗ through f is a regular language.

3. LetL be a regular language, prove that f (L) and f−1 (L) are regular languages, i.e., that f is open and continuous
for the regular topology.

4. Is every open and continuous map computable by a Mealy Machine?

5. A function f : Σ∗ → Γ∗ is Lipschitz for the prefix distance. What is the value of the Lipschitz constant?

6. The graph of a function f : X → Y is the subset graph(f) ⊆ X×Y defined by {(x, y) ∈ X × Y | f(x) = y}.
Can you provide a necessary and sufficient condition on the graph of f for it to be representable using a Mealy Ma-
chine?

Exercise 6 (Decidability Properties of Mealy Machines). In this exercise, the goal is to understand what is decidable about
MealyMachines. For each of the following questions, prove (or disprove) that it is decidable, and in case of decidability, provide
a precise complexity class.

1. Can we decide if two Mealy Machines compute the same function?

2. Can we decide if a Mealy Machine is surjective?

3. Can we decide if f(w) v g(w) for allw ∈ Σ∗?

4. Can we decide if a Mealy Machine is injective?

5. Can we decide if there existsw ∈ Σ∗ such that f(w) = g(w)?

6. Can we decide if a Turing machine computes a function that can be computed by a Mealy Machine?

▷ Hint 6

Exercise 7 (Variations on Mealy Machines). Describe the relationship between the expressiveness of the following varia-
tions of Mealy Machines:

1. Mealy Machines

2. Mealy Machines with lookaheads.

3. Sequential functions.
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4. Mealy Machines with lookaheads with an ambiguous transition relation, but such that every run produces the same
output.

5. Mealy Machines with lookaheads with an ambiguous transition relation, where the semantic is undefined if there are
multiple runs producing different outputs.

6. Mealy Machines with transitions labelled by regular expressions.

Exercise 8 (Efficient String Matching). The goal of this homework is to study the problem of stringmatching. That is, given
a patternm ∈ Σ∗ and a text t ∈ Σ∗ , onewants to produce a textm(t) ∈ (Σ]Σ̄)∗ where occurrences ofm are overlined.
To avoid ambiguity, we will overline non-overlapping occurrences of the pattern, starting from the left of the text t.

1. Is the function that underlines the starts of the matches computable by a Mealy Machine? By a sequential function?
By a Mealy Machine with lookaheads?

2. Same question with underlining the ends of the matches.

3. Same question for the functionm.

4. Conclude by providing an efficient algorithm to perform stringmatching. What is the (time/space) complexity in |m|?
What is the (time/space) complexity in |t|?

2 Homework
Exercise 9 (Continuous Functions). Prove that there exists uncountably many continuous functions fromΣ∗ toΓ∗ for the
regular topology. It is true for continuous and prefix preserving functions?

▷ Hint 7
▷ Hint 8
▷ Solution 1 (Complete Solution)

Exercise 10 (Stability properties of Sequential Functions). We say that a function preserves prefixes if for all u, v ∈ Σ∗ ,
u vprefix v implies f(u) vprefix f(v). Prove that the following propositions are equivalent for a function f : Σ∗ → Γ∗:

1. f is sequential.

2. f is continuous for the regular topology, Lipschitz for the prefix distance, and preserves prefixes.

2.0.1 Solution of the easy implication

Let f be a sequential function, computed by a sequential transducer T = (QT , δT , q
T
0 , λT ). Our first objective is to prove

that f is continuous. To that end, letL be a regular language recognized by a finite monoidM , a morphism µ : Γ∗ →M ,
and an accepting part P ⊆M . We want to prove that f−1 (L) is a regular language.

To that end, let us defineN = (QT → QT )× (QT →M), with the multiplication (δ, λ) · (δ′, λ′) := (δ ◦ δ′, q 7→
λ(q) · λ′(q))). This is a finite monoid, where the pair (id, const1) is the identity element. Let us define φ(a) :=
(δT (a, ·), λT (a, ·)) for alla ∈ Σ. It defines amorphism fromΣ∗ toN . Now, let us considerS := {(δ, λ) ∈ N | λ(δ(q0)) ∈ P}.
It is an easy check that φ−1(S) = f−1 (L), which proves that the latter is a regular language.

Let us now prove that f is Lipschitz for the prefix distance. Let us considerK := max {|λT (a, q)| | a ∈ Σ, q ∈ QT }.
It is an easy check that f is Lipschitz with constantK .

Finally, let us prove that f preserves prefixes. Let u, v ∈ Σ∗ be such that u vprefix v. Because (QT , q
T
0 , δT ) is a

deterministic automaton, f(v) = f(u) · λT (δ(qT0 , u), u−1v).

2.0.2 Solution of the hard implication
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3 Cheat Sheet

3.1 Machines
Definition 1 (Mealy Machine). LetΣ and Γ be two alphabets. A Mealy MachineM is a tuple (q0, Q, δ, λ) such that

1. Q is a finite set of states.

2. q0 ∈ Q is the initial state.

3. δ : Q× Σ → Q is a transition function.

4. λ : Q× Σ → Γ is an output function.

The semantics of a Mealy Machine is given by the following inductive equations:

M(w) := M(q0, w) M(q, ε) := ε M(q, au) := λ(q, a) · M(δ(q, a), u)

Definition 2 (Flip-Flop Machine). A flip-flop machine is a Mealy Machine such that for all letters a ∈ Σ, either δ(·, a) is
the identity function, or it is a constant function. It is a binary flip-flop machine whenQ = {0, 1}.

Definition 3 (Mealy Machine With Lookahead). LetΣ and Γ be two alphabets. A Mealy Machine with LookaheadM is a
tuple (q0, Q, δ, λ) such that

1. Q is a finite set of states.

2. q0 ∈ Q is the initial state.

3. δ ⊆ Q× Σ×Q is a transition relation.

4. λ : Q× Σ×Q→ Γ is an output function.

In addition to this syntactic definition, we furthermore assume that for each w ∈ Σ∗ , there exists at most one path in
the automaton (q0, Q, δ) starting from q0 and readingw.

The semantics of the Mealy Machine is given by considering potential runs of the machine. Because of the absence of
ambiguity, it defines a partial mapM : Σ∗ ⇀ Γ∗ .

Definition 4 (Sequential Functions). Let Σ and Γ be two alphabets. A sequential transducer A is a tuple (q0, Q, δ, λ)
such that

1. Q is a finite set of states.

2. q0 ∈ Q is the initial state.

3. δ : Q× Σ⇀ Q is a partial transition function.

4. λ : Q× Σ → Γ∗ is an output function.

The semantics is defined as for Mealy Machines.
Warning: this is sometimes called pure sequential functions.
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3.2 Maths
Definition 5 (Presburger Arithmetic). Formulas of the Presburger Arithmetic are built from the following grammar:

φ := > | ⊥ | φ ∧ φ | φ ∨ φ | ¬φ | ∃x.φ | x = y + z

Given a valuation ν : x⃗→ N, we define the semantics of φ inductively as follows:

ν |= > ⇐⇒ true
ν |= ⊥ ⇐⇒ false

ν |= φ ∧ ψ ⇐⇒ ν |= φ and ν |= ψ
ν |= φ ∨ ψ ⇐⇒ ν |= φ or ν |= ψ
ν |= ¬φ ⇐⇒ not (ν |= φ)

ν |= ∃x.φ ⇐⇒ there exists n ∈ N s.t. ν[x 7→ n] |= φ
ν |= x = y + z ⇐⇒ ν(x) = ν(y) + ν(z)

Definition 6 (Topology and Continuous functions). LetX be a set. A topology overX is a subset τ ofP(X) closed under
finite intersections and arbitrary unions. In a topological space (X, τ), the subsets in τ are called open subsets, and their
complement are called closed subsets.

A function f : (X, τ) → (Y, θ) is continuous whenever for all open subsetU ∈ θ, its pre-image f−1 (U) is an open
subset of τ . Equivalently, it is continuous if the pre-image of closed subsets are closed subsets.

Definition 7 (Lipschitz functions). A function f : (X, dX) → (Y, dY ) is Lipschitz if there exists a constantK ≥ 0 such
that for all x1, x2 ∈ X2 , dY (f(x1), f(x2)) ≤ KdX(x1, x2).

Definition 8 (Prefix Distance). LetΣ∗ be a finite alphabet. The prefix distance between twowordsu, v is |u|+ |v|−2 |w|
wherew is the longest common prefix of u and v.

Definition 9 (Regular Topology). Let Σ be a finite alphabet. We equip Σ∗ with a metric distance as follows: to a pair of
words u,w, we associate the minimal size s(u,w) of a deterministic automaton that separates u from w. The distance
between two words u and w, is defined as d(u,w) := 2−s(u,w) . The regular topology is the topology defined by this
metric onΣ∗ .

Equivalently, the regular topology is the coarsest topology containing the regular languages as closed subsets.
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A Hints
Hint 1 (Exercise 3 Encoding of numbers and formulas). Encode a formula φ(x⃗) as a regular language of NX , where
numbers are encoded in binary with the most significant bit is on the left, and the padding is on the right.

Hint 2 (Exercise 3 Presburger Operators). Start by proving that each of these operations are computed by Mealy Machines.

1. The equality operator (=): N3 → {0, 1}.

2. The addition operator (+): N2 → N.

3. The existential quantifier (∃x) : Nxy⃗ → Ny⃗ .

Hint 3 (Exercise 4 Encode states). Given a state q ∈ Q, compute using a binary flip-flop machine the sequence of ap-
proximated states {q,¬q}.

Hint 4 (Exercise 4 For the upper bound). Use a binary encoding to obtain a logarithmic number of intermediate machines.

Hint 5 (Exercise 4 For the lower bound). What can you say about a machine that shifts its input by one position?

Hint 6 (Exercise 6 Deciding Injectivity). Consider the set {(u, v) ∈ Σ∗ × Σ∗ | f(u) = f(v)}, and show that it is a reg-
ular language.

Hint 7 (Exercise 9 The alphabet does not matter). Consider the set of all functions fromN toN.

Hint 8 (Exercise 9 Sufficient conditions for continuity). Show that the following conditions are sufficient for a function
f : N → N to be continuous:

1. ∀n ∈ N, f(n) is a factorial,

2. lim infn→∞ f(n) = ∞.
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B Solutions
Solution 1 (Solution to Exercise 9). We will follow the hints given, namely that the alphabet does not matter and that it is
quite easy to be continuous. Indeed, consider f : N → N such that f(n) is a factorial number, and lim infn→∞ f(n) =
∞. Let L ∈ {1}∗ ' N be a regular language, i.e., a language recognized by some finite monoidM , with a morphism
µ : N →M and an accepting part P ⊆M . Our goal is to prove that f−1 (L) is a regular language too.

Let n ∈ N such that f(n) ∈ L, by definition it means that µ(f(n)) ∈ P ⊆M . Recall that for all n ∈ N, there exists
m ∈ N such that f(n) = m!, i.e., f(n) = 1m! , as a consequence, µ(f(n)) = µ(1)m! .

By standard results on finite monoids, there exists an idempotent e inM such that for allm ≥ |M |, µ(1)m! = e.
Let us sketch the proof for completeness purposes. This is obtained by remarking that the semigroup generated by µ(1) is
finite, hence contains an idempotent e, obtained for some power µ(1)k with k ≤ |M |. Unicity is obtained by noticing that
if e1 = µ(1)k1 and e2 = µ(1)k2 , then e1 = ek2

1 = µ(1)k1×k2 = ek1
2 = e2 .

Now, using the fact that lim infn→∞ f(n) = ∞, there existsn0 ∈ N such that for alln ≥ n0 , f(n) ≥ |M |!. As a con-
sequence, for all n ≥ n0 , µ(f(n)) = e. If e ∈ P , this proves that f−1 (L) = {n | n ≥ n0} ∪ {n < n0 | f(n) ∈ L},
the latter is a regular language as the union of two regular languages. Otherwise, e 6∈ P , and we conclude that f−1 (L) =
{n < n0 | f(n) ∈ L}, which is also a regular language.

To conclude, let us remark that there are uncountablymany functions satisfying the above conditions. This can be proven
by considering the following injection of NN (which is well known to be uncountable) into such functions as follows: to a
sequence (pn)n∈N of numbers, one can associate the function f : n 7→ (

∑n
i=0 pi)!.

Remark that in the above injection, all functions are prefix preserving, hence the answer to the second question is also
positive. This has to be compared with the Theorem charaterizing sequential functions.

commit: fd78eb70bc885a88953ac6bfb94edc7b055aad15 7


	Mealy Machines
	Homework
	Solution of the easy implication
	Solution of the hard implication

	Cheat Sheet
	Machines
	Maths

	Hints
	Solutions

