
1

Z-polyregular functions

Abstract—This paper introduces a robust class of functions1

from finite words to integers that we call Z-polyregular functions.2

We show that it admits natural characterizations in terms of3

logics, Z-rational expressions, Z-rational series and transducers.4

We then study two subclass membership problems. First, we5

show that the asymptotic growth rate of a function is computable,6

and corresponds to the minimal number of variables required to7

represent it using logical formulas. Second, we show that first-8

order definability of Z-polyregular functions is decidable. To show9

the latter, we introduce an original notion of residual transducer,10

and provide a semantic characterization based on aperiodicity.11

I. INTRODUCTION12

Deterministic finite state automata define the well-known and13

robust class of regular languages. This class is captured by dif-14

ferent formalisms such as expressions (regular expressions [1]),15

logic (Monadic Second Order (MSO) logic [2]), and algebra16

(finite monoids [3]). Furthermore, it contains a robust subclass17

of independent interest: star-free regular languages, that admits18

equivalent descriptions in terms of machines (counter-free19

automata [4]), expressions (star-free expressions [5]), logic20

(first-order (FO) logic [6]) and algebra (aperiodic monoids [5]).21

Furthermore, one can decide if a regular language is star-free,22

and the proof relies on the existence (and computability) of23

a canonical object associated to each language (its minimal24

automaton [4] or, equivalently, its syntactic monoid [5]).25

Numerous works have attempted to carry the notion of26

regularity from languages to word-to-word functions. This27

work lead to a plethora of non-equivalent classes (such as28

sequential, rational, regular and polyregular functions [7]).29

Decision problems, including first-order definability, become30

more difficult and more interesting for functions [8], mainly31

due to the lack of canonical objects similar to the minimal32

automata of regular languages. It was shown recently that33

first-order definability is decidable for the class of rational34

functions [9] and that a canonical object can be built [10].35

This paper is a brochure for a natural class of functions from36

finite words to integers, that we name Z-polyregular functions.37

Its definition stems from the logical description of regular38

languages. Given an MSO formula φ(x⃗) with free first-order39

variables x⃗, and a word w ∈ A∗, we define #φ(w) to be the40

number of valuations ν such that w, ν |= φ(x⃗). The indicator41

functions of regular languages are exactly the functions #φ42

where φ is a sentence (i.e. it does not have free variables,43

hence has at most one valuation: the empty one). We define44

the class of Z-polyregular functions, denoted ZPoly, as the45

class of Z-linear combinations of functions #φ where φ is in46

MSO with first-order free variables.47

The goal of this paper is to advocate for the robustness of48

ZPoly. To that end, we shall provide numerous characterizations49

of these functions and relate them to pre-existing models. We50

also solve several membership problems and provide effective51

conversion algorithms. This equips ZPoly with a smooth and 52

elegant theory, which subsumes that of regular languages. 53

Contributions: We introduce the class ZPoly as a natural 54

generalization of regular languages via simple counting of MSO 55

valuations. We first connect Z-polyregular functions to word- 56

to-word polyregular functions [7], providing a justification for 57

their name. As a class of functions from finite words to integers, 58

it is then natural to compare ZPoly with the well-studied class 59

of Z-rational series (see e.g. [11]). We observe that ZPoly is 60

exactly the subclass of Z-rational series that have polynomial 61

growth, i.e. the functions such that |f(w)| = O(|w|k) for some 62

k ≥ 0, following the seminal results of Schützenberger [12]. 63

As a consequence, we provide a simple syntax of Z-rational 64

expressions to describe ZPoly as those built without the Kleene 65

star. We also show how ZPoly can be described using natural 66

restrictions on the eigenvalues of representations of Z-rational 67

series. This property is built upon a quantitative pumping 68

lemma characterizing the ultimate behavior of Z-polyregular 69

functions as “ultimately N -polynomial” for some N ≥ 0. We 70

summarize these results in the second column of Table I. 71

We then refine the description of ZPoly by considering for 72

all k ≥ 0, the class ZPolyk of functions described using at 73

most k free variables in the counting MSO formulas. It is 74

easy to check that if f ∈ ZPolyk then |f(w)| = O(|w|k). Our 75

first main theorem shows that this property is a sufficient and 76

necessary condition for a function of ZPoly to be in ZPolyk 77

(see Figure 1). This result is an analogue of the various “pebble 78

minimization theorems” that were shown for word-to-word 79

polyregular functions [13], [14], [15], [16]. We also provide 80

an effective decision procedure from ZPoly to ZPolyk. 81

Our second main contribution is the definition of an almost 82

canonical object associated to each function of ZPoly. We 83

name this object the residual transducer of the function, and 84

show that it can effectively be built. Its construction is inspired 85

by the residual automaton of a regular language, and heavily 86

relies on the decision procedure from ZPoly to ZPolyk. 87

Finally, we define the class ZSF of star-free Z-polyregular 88

functions, as the class of linear combinations of #φ where φ 89

is a first-order formula with free first-order variables. As in the 90

case of ZPoly, observe that the indicator functions of star-free 91

languages are exactly the #φ where φ is a first-order sentence. 92

Our third main contribution then applies the construction of 93

the residual transducer to show that the membership problem 94

from ZPoly to ZSF is decidable. Incidentally, we introduce 95

for k ≥ 0 the class ZSFk (defined in similar way as ZPolyk) 96

and show that ZSFk = ZSF∩ZPolyk, as depicted in Figure 1. 97

Furthermore, we show that the numerous characterizations of 98

ZPoly in terms of existing models can naturally be specialized 99

to build characterizations of ZSF, as depicted in the third 100

column of Table I. 101

Overall, our contribution is the introduction of a natural 102

theory of functions from finite words to Z, that is the 103

2

Formalism Characterization of ZPoly Characterization of ZSF

Counting formulas Counting valuations in MSO (Definition II.5) Counting valuations in FO (Definition V.1)

Polyregular functions sum ◦ polyregular (Proposition II.11) sum ◦ star-free polyregular (Proposition V.17)

Z-rational expressions Closure of rational languages under Cauchy prod-
ucts, sums, and Z-products (Theorem II.18)

Closure of star-free languages under Cauchy prod-
ucts, sums, and Z-products (Theorem V.4)

Ultimately N -polynomial (Theorem II.28) Ultimately 1-polynomial (Theorem V.13)

Z-rational series that are/have Polynomial growth (Theorem II.28) n/a

Eigenvalues in {0} ∪ U (Theorem II.28) Eigenvalues in {0, 1} (Theorem V.18)

Residual transducer Residual transducer (Corollary IV.19) Counter-free residual transducer (Theorem V.13)

TABLE I: Summary of the characterizations of ZPoly and ZSF expressed in different formalisms.

consequence of a reasonable computational power (polynomial104

growth, i.e. less than Z-rational series) and the ability to105

correct errors during a computation (using negative numbers).106

Furthermore, the theory of Z-polyregular functions is built107

using new and non-trivial proof techniques.108

Outline: Section II is devoted to the introduction of the109

classes ZPoly and ZPolyk. We also compare ZPoly with110

polyregular functions and with Z-rational series. We then111

devote Section III to a free variable minimization theorem112

(Theorem III.3), that is a key result towards the effective com-113

putation of a canonical residual transducer in Section IV. We114

then introduce ZSF and ZSFk in Section V, and use the residual115

transducer to prove the decidability of ZSF inside ZPoly116

(Theorem V.8). We conclude by connecting ZSF to polyregular117

functions and Z-rational series. All of the aforementioned118

results include algorithms to decide membership and provide119

effective conversions between the various representations.120

II. Z-POLYREGULAR FUNCTIONS121

The goal of this section is to define Z-polyregular func-122

tions. We first define this class of functions using a logical123

formalism (monadic second-order formulas with free variables,124

Section II-A), then we relate it to (word-to-word) regular and125

polyregular functions (Section II-B) and finally we show that it126

corresponds to a natural and robust subclass of the well-known127

Z-rational series (Sections II-C and II-D).128

In the rest of this paper, Z (resp. N) denotes the set of129

integers (resp. nonnegative integers). If i ≤ j, the set [i:j]130

is {i, i+1, . . . , j} ⊆ N (empty if j < i). The capital letter131

A denotes a fixed alphabet, i.e. a finite set of letters. A∗132

(resp. A+) is the set of words (resp. non-empty words) over133

A. The empty word is ε ∈ A∗. If w ∈ A∗, let |w| ∈ N be134

its length, and for 1 ≤ i ≤ |w| let w[i] be its i-th letter. If135

I = {i1 < · · · < iℓ} ⊆ [1:|w|], let w[I] := w[i1] · · ·w[iℓ].136

If a ∈ A, let |w|a be the number of letters a occurring in137

w. We assume that the reader is familiar with the basics of138

automata theory, in particular the notions of monoid morphisms,139

idempotents in monoids, monadic second-order (MSO) logic140

and first-order (FO) logic over finite words (see e.g. [17]).141

A. Counting valuations on finite words142

Let MSOk be the set of MSO-formulas over the signature143

(A,<) which have exactly k free first-order variables. We144

then let MSO :=
⋃
k∈N MSOk. If φ(x1, . . . , xk) ∈ MSOk, 145

w ∈ A∗ and 1 ≤ i1, . . . , ik ≤ |w|, we write w |= φ(i1, . . . , ik) 146

whenever the valuation x1 7→ i1, . . . , xk 7→ ik makes the 147

formula φ true in the model w. 148

Definition II.1 (Counting). Given φ(x1, . . . , xk) ∈ MSOk, 149

we let #φ : A∗ → N be the function defined by #φ(w) := 150

|{(i1, . . . , ik) : w |= φ(i1, . . . , ik)}|. 151

The value #φ(w) is the number of tuples that make the 152

formula φ true in the model w. 153

Example II.2. If φ ∈ MSO0, then #φ is the indicator function 154

of the (regular) language {w : w |= φ} ⊆ A∗. 155

Example II.3. Let A := {a, b}. Let φ(x, y) := a(x) ∧ b(y), 156

then #φ(w) = |w|a × |w|b for all w ∈ A∗. Let ψ(x, y) := 157

φ(x, y) ∧ x > y, then #ψ(an0ban1 · · · anp) =
∑p
i=0 i× ni. 158

Example II.4. Let φ ∈ MSOk, and x be a fresh variable. Then 159

#(x = x ∧ φ)(w) = |w|×#φ(w) for every w ∈ A∗. Similarly, 160

for all w ∈ A∗ and a ∈ A, #(a(x)∧φ)(w) = |w|a×#φ(w). 161

If F is a subset of the set of functions A∗ → Z and if S ⊆ Z, 162

we let SpanS (F) := {
∑
i aifi : ai ∈ S, fi ∈ F} be the set 163

of S-linear combinations of the functions from F . The set 164

SpanN ({#φ : φ ∈ MSOk, k ≥ 0}) has been recently studied 165

by Douéneau-Tabot in [18] under the name of “polyregular 166

functions with unary output”. In the following, we shall call 167

this class the N-polyregular functions. 168

The goal of this paper is to study the Z-linear combinations 169

of the basic #φ functions, that we call Z-polyregular functions. 170

We shall see that this class is a quantitative counterpart of 171

regular languages that admits several equivalent descriptions, 172

and for which various decision problems can be solved. We 173

provide in Definition II.5 a fine-grained definition of this class 174

of functions, depending on the number of free variables which 175

are used within the #φ basic functions. 176

Definition II.5 (Z-polyregular functions). For k ≥ 0, let 177

ZPolyk := SpanZ ({#φ : φ ∈ MSOℓ, ℓ ≤ k}). We define the 178

class of Z-polyregular functions as ZPoly :=
⋃
k ZPolyk. 179

We also let ZPoly−1 := {0}. 180

Example II.6. ZPoly0 is exactly the class of functions of the 181

form
∑
i δi1Li where the δi ∈ Z and the 1Li are indicator 182

functions of regular languages. 183

3

Z-rational

Z-polyregular
Star-free

Z-polyregular

ZSF0

ZSF1

ZSF2

ZPoly0

ZPoly1

ZPoly2

Polynomial growth

O(n2) growth

O(n) growth

O(1) growth

w 7→ 1L(w) if L is regular but not star-free

w 7→ |w| × (−1)|w|

w 7→ 1L(w) if L star-free

w 7→ |w|a × |w|b if a, b ∈ A

w 7→ (−2)|w|

Fig. 1: The classes of functions studied in this paper.

Example II.7. Following the construction of Example II.4,184

for every k, ℓ ≥ 0, and f ∈ ZPolyℓ, the function g : w 7→185

f(w)× |w|k belongs to ZPolyℓ+k.186

Example II.8. Let 1odd and 1even be respectively the indicator187

functions of words of odd length and even length. For all k ≥ 0,188

the function w 7→ (−1)|w| × |w|k is in ZPolyk. Indeed, it is189

w 7→ 1even(w)×|w|k−1odd(w)×|w|k. Observe that it cannot190

be written as a single δ#φ for some δ ∈ Z, φ ∈ MSOℓ, ℓ ≥ 0,191

since otherwise its sign would be constant.192

The use of negative coefficients in the linear combinations193

has deep consequences on the expressive power of ZPoly.194

Let us consider the function f : w 7→ (|w|a − |w|b)2. Be-195

cause f(w) = |w|2a − 2|w|a|w|b + |w|2b , we conclude from196

Example II.4 that f is in ZPoly2. Although f is non-negative,197

f−1({0}) = {w : |w|a = |w|b} is not a regular language,198

hence f is not N-polyregular function.199

Remark II.9 (More variables). Let ℓ > k ≥ 0, φ ∈ MSOk,
then for all word w ∈ A+ we have:

#φ(w) = #(φ ∧ xk+1 = · · · = xℓ ∧ ∀y.xk+1 ≤ y)(w)

the latter being an MSOℓ formula. This formula also holds200

for w = ε if k > 0, but it may fail for k = 0 because in that201

case the right member equals 0 regardless of the formula φ202

(because there is no valuation), whereas #φ(ε) may not be 0.203

One can refine Remark II.9 to conclude that for all k ≥ 0,204

ZPolyk = SpanZ ({#φ : φ ∈ MSOk} ∪ {1{ε}}). In the rest205

of the paper, 1{ε} will not play any role, and we will safely206

ignore it in the proofs so that ZPolyk will often be considered207

equal to SpanZ ({#φ : φ ∈ MSOk}).208

B. Regular and polyregular functions209

We recall that the class of (word-to-word) functions com-210

puted by two-way transducers (or equivalently by MSO-211

transductions, see e.g. [19]) is called regular functions. As212

an easy consequence of its definition, ZPolyk is preserved213

under pre-composition with a regular function.214

Proposition II.10. For all k ≥ 0, the class ZPolyk is215

(effectively) closed under pre-composition by regular functions.216

Now, we intend to justify the name “Z-polyregular functions” 217

by showing that this class is deeply connected to the well- 218

studied class of polyregular functions from finite words to 219

finite words. Informally, this class of functions can be defined 220

using the formalism of multidimensional MSO-interpretations. 221

The reader is invited to consult [20] for its formal definition, 222

that we skip here. Let sum : {±1}∗ → Z be the sum operation 223

mapping w ∈ {±1}∗ to
∑|w|
i=1 w[i]. 224

Proposition II.11. The class ZPoly is (effectively) the class 225

of functions sum ◦f where f : A∗ → {±1}∗ is polyregular. 226

C. Rational series and rational expressions 227

The class of rational series over the semiring (Z,+,×), also 228

known as Z-rational series, is a robust class of functions from 229

finite words to Z that has been largely studied since the 1960 230

(see e.g. [11] for a survey). It can be defined using the indicator 231

functions 1L of regular languages L ⊆ A∗, and the following 232

combinators given f, g : A∗ → Z and δ ∈ Z: 233

• the external Z-product δf : w 7→ δ × f(w); 234

• the sum f + g : w 7→ f(w) + g(w); 235

• the Cauchy product f ⊗ g : w 7→
∑
w=uv f(u)× g(v); 236

• if and only if f(ε) = 0, the Kleene star f∗ :=
∑
n≥0 f

n
237

where f0 : ε 7→ 1, w ̸= ε 7→ 0 is neutral for Cauchy 238

product and fn+1 := f ⊗ fn. 239

Definition II.12 (Z-rational series). The class of Z-rational 240

series is the smallest class of functions from finite words to Z 241

that contains the indicator functions of all regular languages, 242

and is closed under taking external Z-products, sums, Cauchy 243

products and Kleene stars. 244

We intend to connect Z-rational series and Z-polyregular 245

functions. Let us first observe that not all Z-rational series 246

are Z-polyregular. We say that a function f : A∗ → Z has 247

polynomial growth whenever there exists k ≥ 0 such that 248

|f(w)| = O(|w|k). It is an easy check that a Z-polyregular 249

function has polynomial growth. 250

Claim II.13. If k ≥ 0 and f ∈ ZPolyk then |f(w)| = O(|w|k). 251

4

Example II.14. The map f : w 7→ (−2)|w| is a Z-rational252

series because f = ((−3)1A+)∗. However f ̸∈ ZPoly since it253

does not have polynomial growth.254

It is easy to see that the class ZPoly is closed under taking255

Cauchy products, which is done via a simple rewriting.256

Claim II.15. Let k, ℓ ≥ 0. Let f ∈ ZPolyk and g ∈ ZPolyℓ,257

then f ⊗ g ∈ ZPolyk+ℓ+1. The construction is effective.258

As a consequence, if L ⊆ A∗ is regular and f ∈ ZPolyk,259

then 1L⊗ f ∈ ZPolyk+1. The following result states that such260

functions actually generate the whole space ZPolyk+1.261

Proposition II.16. Let k ≥ 0, the following (effectively) holds:

ZPolyk+1 = SpanZ ({1L⊗ f : L regular, f ∈ ZPolyk}).

Example II.17. The map w 7→ (−1)|w||w| is in ZPoly1 as it262

equals 1odd ⊗1odd + 1even ⊗1even − 1even ⊗1odd − 1odd ⊗1even.263

Now, let us show that Z-polyregular functions can be264

characterised both syntactically and semantically as a subclass265

of Z-rational series. We prove that the membership problem is266

decidable and provide and effective conversion algorithm.267

Theorem II.18 (Rational series of polynomial growth). Let268

f : A∗ → Z, the following are equivalent:269

1) f is a Z-polyregular function;270

2) f belongs to the smallest class of functions that contains271

the indicator functions of all regular languages and272

is closed under taking external Z-products, sums and273

Cauchy products;274

3) f is a Z-rational series having polynomial growth.275

Furthermore, one can decide whether a Z-rational series is a276

Z-polyregular function and the translations are effective.277

Proof. For Item 2 ⇒ Item 1, observe that ZPoly contains278

the indicator functions of regular languages, is closed under279

external Z-products, sums, and Cauchy products (thanks to280

Claim II.15). For Item 1 ⇒ Item 2, we obtain for all k ≥ 0281

as an immediate consequence of Proposition II.16:282

ZPolyk = SpanZ({1L0 ⊗ · · ·⊗1Lk

: L0, . . . , Lk regular languages}) (1)

and the result follows.283

The equivalence between Item 2 and Item 3 follows (in a284

non effective way) from [11, Corollary 2.6 p 159]. Furthermore285

polynomial growth is decidable by [11, Corollary 2.4 p 159]. To286

provide an effective translation, one can start from a Z-rational287

series f of polynomial growth, enumerate all the Z-polyregular288

functions g, rewrite them as rational series (using Item 1 ⇒289

Item 2) and check whether f = g since this property can be290

decided for Z-rational series [11, Corollary 3.6 p 38].291

Remark II.19. [18, Theorem 3.3] gives a similar result when292

comparing N-polyregular functions and N-rational series.293

Remark II.20. The class of Z-polyregular functions is also294

closed under Hadamard product (f × g(w) := f(w)× g(w)).295

This can be obtained by generalising Example II.4. Moreover,296

f × g ∈ ZPolyk+ℓ whenever f ∈ ZPolyk and g ∈ ZPolyℓ.297

Since the equivalence is decidable for Z-rational series [11, 298

Corollary 3.6 p 38], we obtain the following. 299

Corollary II.21 (Equivalence problem). One can decide if two 300

Z-polyregular functions are equal. 301

D. Rational series and representations 302

In this section, we intend to provide another description of 303

Z-polyregular functions among Z-rational series. To that end, 304

we first recall that rational series can also be described using 305

matrices (or, equivalently, weighted automata). Let Mn,m(Z) 306

be the set of all n ×m matrices with coefficients in Z. We 307

equip Mn,m(Z) with the usual matrix multiplication. 308

Definition II.22 (Linear representation). We say that a triple 309

(I, µ, F) where µ : A∗ → Mn,n(Z) is a monoid morphism, 310

I ∈ M1,n(Z) and F ∈ Mn,1(Z), is a Z-linear representation 311

of a function f : A∗ → Z if f(w) = Iµ(w)F for all w ∈ A∗. 312

It is well-known since Schützenberger (see e.g. [11, Theo- 313

rem 7.1 p 17]) that the class of Z-rational series is (effectively) 314

the class of functions that have a Z-linear representation. 315

Example II.23. The map w 7→ (−1)|w||w| from Example II.17
is a Z-polyregular function, hence a it is a Z-rational series.
It has the following Z-linear representation:((

−1 0
)
, w 7→

(
−1 1
0 −1

)|w|
,

(
1
0

))
.

Note that the eigenvalues of any matrix in µ(A∗) are 1 or −1. 316

Example II.24. The function w 7→ (−2)|w| from Example II.14 317

is a Z-rational series that is not a Z-polyregular function. It 318

can be represented via ((1), µ, (1)) where µ(w) = ((−2)|w|) 319

for all w ∈ A∗. Observe that for all n ≥ 1, there exists a 320

matrix in µ(A∗) whose eigenvalue has modulus 2n > 1. 321

A Z-linear representation (I, µ, F) of a function f is said to 322

be minimal, when it has minimal dimension n among all the 323

possible representations of f . Given a matrix M ∈ Mn,n(Z), 324

we let Spec(M) ⊆ C be its spectrum, that is the set of 325

all its (complex) eigenvalues. If S ⊆ Mn,n(Z), we let 326

Spec(S) :=
⋃
M∈S Spec(M) be the union of the spectrums. 327

Finally, let B(0, 1) := {x ∈ C : |x| ≤ 1} be the unit disc and 328

U := {x ∈ C : ∃n ≥ 1, xn = 1} be the roots of unity. 329

Now, we show that Z-polyregular functions can be character- 330

ized through the eigenvalues of Z-linear representations. More 331

precisely, Theorem II.28 will relate the asymptotic growth of 332

a series to the spectrum of the set of matrices µ(A∗). As a 333

first step, let us observe that the eigenvalues occurring in a 334

minimal representation can be revealed by iterating words. 335

Lemma II.25. Let f : A∗ → Z be a Z-rational series and 336

(I, µ, F) be a minimal Z-linear representation of f . Let w ∈ A∗ 337

and λ ∈ Spec(µ(w)). There exists coefficients αi,j ∈ C for 338

1 ≤ i, j ≤ n, and words u1, v1, . . . , un, vn ∈ A∗ such that 339

λX =
∑n
i,j=1 αi,jf(viw

Xuj) for all X ≥ 0. 340

Now, we refine the notion of polynomial growth to explicit 341

the ultimate behaviour of a function when iterating factors. 342

5

Definition II.26. Let N > 0. A function f : A∗ → Z343

is ultimately N -polynomial whenever there exists M ≥ 0344

such that for all α0, w1, α1, . . . , wℓ, αℓ ∈ A∗, there exists345

P ∈ Q[X1, . . . , Xℓ], such that f(α0w
NX1
1 α1 · · ·wNXℓ

ℓ αℓ) =346

P (X1, . . . , Xℓ), whenever X1, . . . , Xℓ ≥M .347

In this section we only need to have ℓ = 1, but Defini-348

tion II.26 has been made generic so that it can be reused in349

Section V when dealing with aperiodicity. Now, we observe350

that ultimate polynomiality is preserved under taking sums,351

external Z-products and Cauchy products. Lemma II.27 also352

provides a fine-grained control over the value N of ultimate353

N -polynomiality, that will mostly be useful in Section V.354

Lemma II.27. Let f, g : A∗ → Z be (respectively) ultimately355

N1-polynomial and ultimately N2-polynomial, then:356

• f + g and f ⊗ g are ultimately (N1 ×N2)-polynomial;357

• δf is ultimately N1-polynomial for δ ∈ Z.358

Furthermore, for every regular language L, there exists N > 0359

such that 1L is ultimately N -polynomial.360

Now, we have all the elements to prove the main theorem361

of this section.362

Theorem II.28 (Polynomial growth and eigenvalues). Let363

f : A∗ → Z, the following are equivalent:364

1) f is a Z-polyregular function;365

2) f is a Z-rational series that is ultimately N -polynomial366

for some N > 0;367

3) f is a Z-rational series and for all minimal Z-linear368

representation (I, µ, F) of f , Spec(µ(A∗)) ⊆ U ∪ {0}.369

4) f is a Z-rational series and it exists a Z-linear represen-370

tation (I, µ, F) of f such that Spec(µ(A∗)) ⊆ B(0, 1);371

Proof. Item 4 ⇒ Item 1 is a direct consequence of [21,372

Theorem 2.6] and Theorem II.18. Item 1 ⇒ Item 2 follows373

from Lemma II.27 and Theorem II.18.374

For Item 2 ⇒ Item 3, let (I, µ, F) be a minimal represen-375

tation of f in Z, of dimension n ≥ 0. Let w ∈ A∗ and λ ∈376

Spec(µ(w)). Thanks to Lemma II.25, there exists αi,j , ui, vj377

for 1 ≤ i, j ≤ n, such that λX =
∑

1≤i,j≤n αi,jf(viw
Xuj)378

for X large enough. By assumption, for all 1 ≤ i, j ≤ n,379

there exists Ni,j > 0 such that X 7→ f(viw
Ni,jXuj) is a380

polynomial for X large enough. Hence there exists N > 0 (i.e.381

the product of the Ni,j) such that X 7→ λNX = (λN)X is a382

polynomial for X large enough, which therefore must be a383

constant polynomial. Hence λN ∈ {0, 1}, which implies that384

λ ∈ {0} ∪ U. Item 3 ⇒ Item 4 is obvious.385

Remark II.29. Item 3 of Theorem II.28 is optimal, in the sense386

that for all λ ∈ U ∪ {0}, there exists a Z-rational series of387

polynomial growth having a minimal representation (I, µ, F)388

with λ ∈ Spec(µ(A∗)) (if λ ∈ U, we let µ(a) be the companion389

matrix of the cyclotomic polynomial associated to λ).390

Remark II.30. Leveraging the proof scheme used for the391

implication Item 2 ⇒ Item 3 of Theorem II.28, one can392

actually show that the following asymptotic polynomial bound393

characterizes Z-polyregular functions among Z-rational series:394

for all u,w, v ∈ A∗, there exists P ∈ Q[X], such that395

|f(uwXv)| ≤ P (X), for X large enough.396

Remark II.31. Beware that Spec(µ(A)) ⊆ {0} ∪ U has no 397

reason to imply Spec(µ(A∗)) ⊆ {0} ∪ U. 398

III. FREE VARIABLE MINIMIZATION AND GROWTH RATE 399

In this section, we study the membership problem from 400

ZPoly to ZPolyk for a given k ≥ 0. As observed in Claim II.13, 401

if f ∈ ZPolyk then |f(w)| = O(|w|k). We show that this 402

asymptotic behavior completely characterizes ZPolyk inside 403

ZPoly. This statement is formalized in Theorem III.3, which 404

also provides both a decision procedure and an effective 405

conversion algorithm. It turns out that Theorem III.3 is also 406

stepping stone towards computing the residual automaton of a 407

function f ∈ ZPoly, which is done in Section IV. 408

This can be understood as result that “minimizes” the number 409

of free variables needed to describe a Z-polyregular function. 410

As such, it is tightly connected with the “pebble minimization” 411

results that exists for (word-to-word) polyregular functions [16] 412

and N-polyregular functions [13]. However, these results cannot 413

be used as black box theorems to minimize the number of 414

free variables of Z-polyregular functions because the negative 415

coefficients of the latter induce non-trivial behaviors. 416

To capture the growth rate of Z-polyregular functions, we 417

shall introduce a quantitative variant of the traditional pumping 418

lemmas. Before that, let us extend the big O notation to 419

multivariate functions f, g : Nn → Z as follows: we say 420

that f = O(g) whenever there exists N,C ≥ 0 such that 421

|f(x1, . . . , xn)| ≤ C|g(x1, . . . , xn)| for every x1, . . . , xn ≥ 422

N . We similarly extend the notation f(x) = Ω(g(x)) to 423

multivariate functions. 424

Definition III.1. A function f : A∗ → Z is k-pumpable 425

whenever there exists α0, . . . , αk ∈ A∗, w1, . . . , wk ∈ A∗, 426

|f(α0

∏k
i=1 w

Xi
i αi)| = Ω(|X1 + · · ·+Xk|k). 427

Example III.2. For all k ≥ 0, for all f ∈ ZPolyk, f is not 428

(k + 1)-pumpable because |f(w)| = O(|w|k). 429

Theorem III.3 (Free Variable Minimization). Let f ∈ ZPoly 430

and k ≥ 0. The following conditions are equivalent: 431

1) f ∈ ZPolyk; 432

2) |f(w)| = O(|w|k); 433

3) f is not (k + 1)-pumpable. 434

Furthermore, the minimal k such that f ∈ ZPolyk is com- 435

putable, and the construction is effective. 436

The proof of Theorem III.3 is done via induction on k, and 437

follows directly from the following induction step, for which 438

we devote the rest of Section III. 439

Induction Step III.4. Let k ≥ 1 and f ∈ ZPolyk. The 440

following conditions are equivalent: 441

1) f ∈ ZPolyk−1; 442

2) |f(w)| = O(|w|k−1); 443

3) f is not k-pumpable. 444

Moreover this property can be decided and the construction is 445

effective. 446

Beware that one must be able to pump several factors at 447

once to detect the growth rate, as illustrated in the following 448

example. This has to be contrasted with Remark II.30. 449

6

Example III.5. Let f : akbℓ 7→ k × ℓ and w 7→ 0 otherwise.450

The function f is Z-polyregular and 2-pumpable, however,451

f(α0w
Xα1) = O(X) for every triple α0, w, α1 ∈ A∗.452

Our proof of Induction Step III.4 is built upon factorization453

forests. Given a morphism µ : A∗ →M into a finite monoid454

and w ∈ A∗, a µ-forest of w is a forest that can be represented455

as a word over Â := A ⊎ {⟨, ⟩}, defined as follows.456

Definition III.6 (Factorization forest [22]). Given a monoid457

morphism µ : A∗ → M and w ∈ A∗, we say that F is a458

µ-forest of w when:459

• either F = a, and w = a ∈ A;460

• or F = ⟨F1⟩ · · · ⟨Fn⟩, w = w1 · · ·wn and for all 1 ≤ i ≤461

n, Fi is a µ-forest of wi ∈ A+. Furthermore, if n ≥ 3462

then µ(w1) = · · · = µ(wn) is an idempotent of M .463

We write Fµ ⊆ (Â)∗ to denote the set of µ-forests. Because464

forests are (ordered) trees, we will use the standard vocabulary465

to talk about the nodes, the sibling/parent relation, the root,466

the leaves and the depth of a forest. We let Fµ
d ⊆ (Â)∗ be the467

set of µ-forests with depth at most d. Let word : Fµ
d → A∗ be468

the function mapping a µ-forest of w ∈ A∗ to w itself.469

Example III.7. Let M := ({−1, 1, 0},×). A forest F ∈ Fµ
5470

(where µ : M∗ → M maps a word to the product of its471

elements) such that word(F) = (−1)(−1)0(−1)000000 is472

depicted in Figure 2. Double lines denote idempotent nodes473

(i.e. nodes with more than 3 children).474

When M is a finite monoid, it is known from Simon’s475

celebrated theorem [22] that any word in A∗ has a µ-forest of476

bounded depth. Furthermore, this small forest can be computed477

by a regular function (notion introduced in Section II-B).478

Theorem III.8 ([22], [23]). Given a morphism into a finite479

monoid µ : A∗ → M , one can effectively compute some480

d ≥ 0 and a regular function forest : A∗ → Fµ
d such that481

word ◦ forest is the identity function.482

In order to prove Induction Step III.4, we shall consider a483

function f : A∗ → Z ∈ ZPolyk that is not k-pumpable, and484

show how to compute it as a function in ZPolyk−1. To that end,485

we shall construct a function g : Â∗ → Z ∈ ZPolyk−1 such that486

f = g ◦ forest. Since forest is regular thanks to Theorem III.8,487

it will follow that f ∈ ZPolyk−1 by Proposition II.10. Remark488

that it is only needed to define g on Fµ
d .489

Following the classical connections between MSO-formulas490

and regular languages, we prove in Claim III.11 that for every491

function f ∈ ZPolyk there exists a finite monoid M and a492

morphism µ : A∗ →M , such that f(w) can be reconstructed493

using “simple” MSO-formulas which are evaluated along494

bounded-depth µ-factorizations of w.495

Claim III.9. Given µ : A∗ → M a morphism into a finite496

monoid and d ∈ N, the following predicates are MSO definable497

for words over Â. For all F ∈ Fµ
d , and w = word(F), then:498

• F |= isleaf(x) if and only if x is a leaf of F ;499

• F |= betweenm(x, y) if and only if x and y are leaves of500

F , x ≤ y, and µ(w[x] . . . w[y]) = m;501

• F |= leftm(x) if and only if x is a leaf of F , and502

µ(w[1] . . . w[x]) = m;503

• F |= rightm(x) if and only if x is a leaf of F , and 504

µ(w[x] . . . w[|w|]) = m. 505

Whenever F ∈ Â∗ \ Fµ
d , the semantics are undefined. 506

Definition III.10. The fragment INV is a subset of MSO over 507

Â, that contains the quantifier free formulas using only the 508

predicates betweenm, leftm, and rightm where m ranges over 509

M , and where every free variable x is guarded by the predicate 510

isleaf(x). Furthermore, we let INVk := INV ∩MSOk. 511

Claim III.11 ([14], [16]). For all f ∈ ZPolyk, one can 512

(effectively) build a finite monoid M , a depth d ∈ N, a 513

surjective morphism µ : A∗ →M , constants δi ∈ Z, formulas 514

ψi ∈ INVk, such that for every word w ∈ A∗, for every 515

factorization forest F ∈ Fµ
d of w, f(w) =

∑n
i=1 δi×#ψi(F). 516

In the rest of this section, we focus on the number of free 517

variables in Z-linear combinations of #ψ where ψ ∈ INV. 518

The crucial idea is that one can leverage the structure of the 519

forest F ∈ Fµ
d to compute #ψ more efficiently, at the cost of 520

building a non-INV formula. 521

For that, we explore the structure of the forest F as follows: 522

given a node t in a forest F , we define its skeleton to be the 523

subforest rooted at that node, containing only the right-most 524

and left-most children recursively. This notion was already 525

used in [18], [15], [16] for the study of pebble transducers. 526

Definition III.12. Let F ∈ Fµ and t ∈ Nodes(F), we define 527

the skeleton of t by: 528

• if t = a ∈ A is a leaf, then Skel(t) := {t}; 529

• otherwise if t = ⟨F1⟩ · · · ⟨Fn⟩, then Skel(t) := {t} ∪ 530

Skel(F1) ∪ Skel(Fn). 531

Let w ∈ A∗, F be a µ-forest of w, and t ∈ Nodes(F). The 532

set of nodes Skel(t) defines a µ-forest of a (scattered) subword 533

u of w: the one obtained by concatenating the leaves of F that 534

are in Skel(t). See Figure 2 for an example of a skeleton. A 535

crucial property of Skel(t) seen as a forest is that it preserves 536

the evaluation: 537

Claim III.13. For all d ≥ 0, finite monoid M , morphism 538

µ : A∗ →M , forest F ∈ Fµ
d , node t ∈ F , µ(word(Skel(t))) = 539

µ(word(t)), because we only remove inner idempotent nodes. 540

−1 −1 0 −1 0 0 0 0 0 0

Fig. 2: A forest F with word(F) = (−1)(−1)0(−1)000000
together with a skeleton in blue.

Let F be a forest and x be a leaf in F . Observe that 541

Skel(x) is exactly x itself. There may exist several nodes 542

t ∈ F such that x ∈ Skel(x), however only one of them is 543

maximal thanks to Lemma III.14. As a consequence one can 544

partition Leaves(F) depending on the maximal skeleton (for 545

inclusion) which contains a given leaf (Definition III.15). 546

7

Lemma III.14. Let x ∈ Leaves(F), there exists t ∈ Nodes(F)547

such that x ∈ Skel(t). Furthermore, for every t′ such that548

x ∈ Skel(t′), Skel(t) ⊆ Skel(t′) or Skel(t′) ⊆ Skel(t).549

Definition III.15. Let skel-root : Leaves(F) → Nodes(F)550

map a leaf x to the t ∈ Nodes(F) such that x ∈ Skel(t)551

and Skel(t) is maximal for inclusion.552

Following the work of [18], we define a notion of dependency553

of leaves (Definition III.17) based on the relationship between554

their maximal skeletons (Definition III.16).555

Definition III.16 (Observation). We say that t′ ∈ Nodes(F)556

observes t ∈ Nodes(F) if either t′ is an ancestor of t, or557

the immediate left or right sibling of an ancestor of t, or an558

immediate sibling of t, or t′ = t.559

Definition III.17 (Dependency). In a forest F , a leaf y depends560

on a leaf x when skel-root(y) observes skel-root(x).561

Beware that the relation x depends-on y is not symmetric.562

This allows us to ensure that the number of leaves y that563

depend on a fixed leaf x is uniformly bounded.564

Claim III.18. Given d ≥ 0, there exists a (computable) bound565

Nd ∈ N such that for all F ∈ Fµ
d and all leaf x ∈ Leaves(F),566

there exist at most Nd leaves which depend on x.567

It is a routine check that for every fixed d, one can define the
predicate sym-dep(x, y) in MSO over Fµ

d checking whether
x depends-on y or y depends-onx, that is the symmetrised
version of x depends-on y. We generalize this predicate to
tuples x⃗ := (x1, . . . , xk) via:

sym-dep(x⃗) :=


⊤ for k = 0;
⊤ if and only if x1 is the root for k = 1;∨
i̸=j sym-dep(xi, xj) otherwise.

Notice that the independence (or dependence)568

of a tuple of leaves x⃗ only depends on the tuple569

skel-root(x1), . . . , skel-root(xn). The notion of dependent570

leaves is motivated by the fact that counting dependent leaves571

can be done with one less variable, as shown in Lemma III.19.572

Lemma III.19. Let d ≥ 0, M be a finite monoid, µ : A∗ →M ,573

k ≥ 1, and ψ ∈ INVk. One can effectively build a function574

g : (Â)∗ → Z ∈ ZPolyk−1 such that for every F ∈ Fµ
d ,575

g(F) = #(ψ(x⃗) ∧ sym-dep(x⃗))(F).576

Definition III.20. Let k ≥ 1 and f ∈ ZPolyk, thanks to577

Claim III.11 and Theorem III.8, there exists µ : A∗ → M ,578

d ≥ 0, δi ∈ Z, ψi ∈ INVk such that:579

f =

(
n∑
i=1

δi#ψi

)
◦ forest

=

(
n∑
i=1

δi#(ψi(x⃗) ∧ sym-dep(x⃗))

)
︸ ︷︷ ︸

:=fdep

◦ forest

+

(
n∑
i=1

δi#(ψi(x⃗) ∧ ¬ sym-dep(x⃗))

)
︸ ︷︷ ︸

:=findep

◦ forest .

(2)

We say that fdep is the dependent part of f and findep is its 580

independent part. 581

Thanks to Lemma III.19 and Proposition II.10, for every 582

k ≥ 1 and f ∈ ZPolyk, (fdep ◦ forest) ∈ ZPolyk−1 (over 583

Fµ
d). Hence, whether the function f belongs to ZPolyk−1 only 584

depends on its independent part. We will actually prove that in 585

this case, f ∈ ZPolyk−1 if and only if findep = 0. For that, we 586

will rely on “pumping families” that follows the factorization 587

of forest. 588

Definition III.21 (Pumping family). A (µ, d)-pumping family 589

of size k ≥ 1 is given by words α0, w1, α2, . . . , αk−1, wk, αk ∈ 590

A∗, such that ui ̸= ε, together with a family F X⃗ of forests in 591

Fµ
d such that F X⃗ is a µ-forest of wX⃗ := α0

∏k
i=1(wi)

Xiαi 592

for every X⃗ := X1, . . . , Xk ≥ 0. 593

Remark III.22. A (µ, d)-pumping family of size k satisfies 594

that |wX⃗ | = Θ(X1+ · · ·+Xk), and |F X⃗ | = Θ(X1+ · · ·+Xk) 595

since the depth of F X⃗ is bounded by d. 596

Lemma III.23. Let findep be defined as in Equation (2). Then, 597

findep ̸= 0 if and only if there exists a (µ, d)-pumping family 598

of size k such that f(F X⃗) is ultimately a Z-polynomial in 599

X1, . . . , Xk with a non-zero coefficient for X1 · · ·Xk. 600

Moreover, one can decide whether findep = 0. 601

Now, we are almost ready to conclude the proof of Induction 602

Step III.4. The only difficulty left is handled by the following 603

technical lemma which enables to lift a bound on the asymptotic 604

growth of polynomials to a bound on their respective degrees. 605

It is also reused in Section V. 606

Lemma III.24. Let P,Q be two polynomials in R[X1, . . . , Xn]. 607

If |P | = O(|Q|), then deg(P) ≤ deg(Q). 608

Proof of Induction Step III.4. The only non-trivial implication 609

is Item 3 ⇒ Item 1. Let f ∈ ZPolyk verifying the conditions of 610

Item 3. We can decompose this function following Equation (2). 611

As observed above, we only need to show that findep = 0. 612

Consider a pumping family (wX⃗ , F X⃗) of size k, we have:

|findep(F X⃗)| = |f(wX⃗)−fdep(F X⃗)| = O(|X1+· · ·+Xk|k−1).

Assume by contradiction that findep ̸= 0, Lemma III.23 provides 613

us with a pumping family such that findep(F X⃗) is ultimately 614

a polynomial with non-zero coefficient for X1 · · ·Xk. As this 615

polynomial is bounded ultimately by (X1 + · · · + Xk)
k−1, 616

Lemma III.24 yields a contradiction. 617

The constructions of forest, fdep, and findep are effective, 618

therefore so is our procedure. Moreover, one can decide whether 619

findep = 0 thanks to Lemma III.23. 620

IV. RESIDUAL TRANSDUCERS 621

In this section, we provide a canonical object associated to 622

any Z-polyregular function, named its residual transducer. Our 623

construction is effective, and the algorithm heavily relies on 624

Theorem III.3. This new object has its own interest, and it will 625

also be used in Section V to decide first-order definability of 626

Z-polyregular functions, that will extend first-order definability 627

for regular languages (see e.g. [6] for an introduction). 628

8

A. Residuals of a function629

We first introduce the notion of residual of a function630

f : A∗ → Z under a word u ∈ A∗.631

Definition IV.1 (Residual). Given f : A∗ → Z and u ∈ A∗,632

we define the function u ▷ f : A∗ → Z, w 7→ f(uw). We let633

Res(f) := {u ▷ f : u ∈ A∗} be the set of residuals of f .634

Example IV.2. The residuals of the function w 7→ |w|2 are635

the functions w 7→ |w|2 + 2n|w|+ n2 for n ≥ 0.636

Example IV.3. The residuals of the function w 7→ (−2)|w| are637

exactly the functions w 7→ (−2)n+|w| for n ≥ 0.638

It is easy to see that u 7→ u ▷ f defines a monoid action of639

A∗ over A∗ → Z. Let us observe that this action (effectively)640

preserves the classes of functions ZPolyk.641

Claim IV.4. Let k ≥ 0, f ∈ ZPolyk and u ∈ A∗. Then642

u ▷ f ∈ ZPolyk and this result is effective.643

Remark IV.5 ([11, Corollary 5.4 p 14]). Let f : A∗ → Z, this644

function is a Z-rational series if and only if SpanZ(Res(f))645

has finite dimension.646

Note that if L ⊆ A∗ and u ∈ A∗, then u ▷1L is the647

characteristic function of the well-known residual language648

u−1L := {w ∈ A∗ : uw ∈ L}. In particular, the set649

{u ▷1L : u ∈ A∗} is finite if and only if L is regular. However,650

given f ∈ ZPolyk for k ≥ 1, the set {u ▷ f : u ∈ A∗} is not651

finite in general (see e.g. Example IV.2). We now intend to652

show that this set is still finite, up to an identification of the653

functions whose difference is in ZPolyk−1.654

Definition IV.6 (Growth equivalence). Given k ≥ −1 and655

f, g : A∗ → Z, we let f ∼k g if and only if f − g ∈ ZPolyk656

Let us observe that ∼k is an equivalence relation, that is657

compatible with external Z-products, sums, ⊗ and ▷ .658

Claim IV.7. For all k ≥ −1, ∼k is an equivalence relation and659

the following holds for all u ∈ A∗, δ ∈ Z, and f, g : A∗ → Z:660

• if f ∼k g, then u ▷ f ∼k u ▷ g;661

• u ▷ (1L⊗ f) ∼k (u ▷1L)⊗ f for L ⊆ A∗;662

• if f ∼k g and f ′ ∼k g′ then f + f ′ ∼k g + g′;663

• if f ∼k g then δ · f ∼k δ · g.664

By combining these results with the characterization of665

ZPoly via these combinators in Theorem II.18, we can show666

that a function f ∈ ZPolyk has a finite number of residuals,667

up to ∼k−1 identification.668

Lemma IV.8 (Finite residuals). Let k ≥ 0 and f ∈ ZPolyk,669

then the quotient set Res(f)/ ∼k−1 is finite.670

Remark IV.9. Example IV.3 exhibits a Z-rational series f671

such that Res(f)/ ∼k is infinite for all k ≥ 0.672

Finally, we note that ∼k is decidable in ZPoly.673

Claim IV.10 (Decidability). Given k ≥ −1 and f, g ∈ ZPoly,674

one can decide whether f ∼k g holds.675

Proof. Let f, g ∈ ZPoly. For k ≥ 0, f ∼k g if and only if676

|(f − g)(w)| = O(|w|k) and this property is decidable by677

Theorem III.3. For k = −1, we have f ∼k g if and only if 678

f = g, which is decidable by Corollary II.21. 679

B. Residual transducers 680

Now we intend to show that a function f ∈ ZPolyk can 681

effectively be computed by a canonical machine, whose states 682

are based on the finite set Res(f)/ ∼k−1, in the spirit of the 683

residual automaton of a regular language. First, let us introduce 684

an abstract notion of transducer which can call functions on 685

suffixes of its input (this definition is inspired by the marble 686

transducers of [24], that call functions on prefixes). 687

Definition IV.11 (H-transducer). Let k ≥ 0 and H be a 688

fixed subset of the functions A∗ → Z. A H-transducer T = 689

(A,Q, q0, δ,H, λ, F) consists of: 690

• a finite input alphabet A; 691

• a finite set of states Q with q0 ∈ Q initial; 692

• a transition function δ : Q×A→ Q; 693

• a labelling function λ : Q×A→ H; 694

• an output function F : Q→ Z. 695

Given q ∈ Q, we define by induction on w ∈ A∗ the value 696

Tq(w) ∈ Z. For w = ε, we let Tq(w) := F (q). Otherwise 697

let Tq(aw) := Tδ(q,a)(w) + λ(q, a)(w). Finally, the function 698

computed by the H-transducer T is defined as Tq0 : A∗ → Z. 699

Observe that all the functions Tq are total. 700

Let us recall the standard definition of δ∗ via δ∗(q, ua) := 701

δ(δ∗(q, u), a) and δ∗(q, ε) = q. Using this notation, a simple 702

induction shows that Tq(w) =
∑
uav=w λ(δ

∗(q, u), a)(v) + 703

F (δ∗(q, w)). As a consequence, H-transducers are closely 704

related to Cauchy products. 705

Example IV.12. We have depicted in Figure 3 a ZPoly−1- 706

transducer and a ZPoly0-transducer computing the function 707

1aA∗ for A = {a, b}. The first one can easily be identified 708

with the minimal automaton of 1aA∗ (up to considering that 709

a state is final if it outputs 1). The second one has a single 710

state and it “hides” its computation into the calls to ZPoly0. 711

One can check e.g. that 1 = 1aA∗(aab) = (1 − 1aA∗(ab)) + 712

(1− 1aA∗(b))− 1aA∗(ε) + 0. 713

The reader may guess that every function f ∈ ZPolyk 714

can effectively be computed by a ZPolyk−1-transducer. We 715

provide a stronger result and show that f can be computed by 716

some specific ZPolyk−1-transducer whose transition function 717

is uniquely defined by Res(f)/ ∼k−1. 718

Definition IV.13. Let k ≥ 0, let T = (A,Q, q0, δ,H, λ, F) be 719

a ZPolyk−1-transducer and f : A∗ → Z. We say that T is a 720

k-residual transducer of f if the following conditions hold: 721

• T computes f ; 722

• Q = Res(f)/ ∼k−1; 723

• for all w ∈ A∗, w ▷ f ∈ δ∗(q0, w); 724

• λ(Q,A) ⊆ SpanZ(Res(f)) ∩ ZPolyk−1. 725

Given a regular language L, the 0-residual transducer of its 726

indicator function 1L can easily be identified with the minimal 727

automaton of the language L, like in Example IV.12. However, 728

for k ≥ 1, the k-residual transducer of f ∈ ZPolyk may not 729

be unique. More precisely, two k-residual transducers share 730

9

q0

0

q1 1

q2 0

a | 0

b | 0

a, b | 0

a, b | 0

(a) A ZPoly−1-transducer computing 1aA∗ .

q0 0

a | 1− 1aA∗

b | − 1aA∗

(b) A ZPoly0-transducer computing 1aA∗

Fig. 3: Two transducers computing 1aA∗ .

the same underlying automaton (A,Q, δ, λ), but the labels λ731

of the transitions may not be the same.732

Example IV.14. The ZPoly−1-transducer (resp. ZPoly0-733

transducer) from Figure 3 is a 0-residual transducer (resp. 1-734

residual transducer) of 1aA∗ . Let us check it for the 1-residual735

transducer. First note that b ▷1aA∗ ∼0 a ▷1aA∗ ∼0 1aA∗ ,736

hence |Res(1aA∗)/ ∼0 | = 1. Thus a 1-residual transducer737

of 1aA∗ has exactly one state q0. Furthermore the labels738

of the transitions of our transducer belong to λ(Q,A) ⊆739

SpanZ(Resf (a)) since 1− 1aA∗ = (a ▷1aA∗)− 1aA∗ .740

Example IV.15. Let A := {a, b}. The function f : w 7→ |w|a×741

|w|b ∈ ZPoly2 has a single residual up to ∼1-equivalence. A742

2-residual transducer of f is depicted in Figure 4a.743

Example IV.16. Let A := {a}. The function g : w 7→744

(−1)|w|×|w| ∈ ZPoly1 has two residuals up to ∼0-equivalence.745

A 1-residual transducer of g is depicted in Figure 4b.746

q0 0

a | (a ▷ f)− f : w 7→ |w|b

b | (b ▷ f)− f : w 7→ |w|a

(a) A 2-residual transducer of f : w 7→ |w|a|w|b.

q0

0

q1 −1

a | 0

a | (aa ▷ g)− g : w 7→ 2× (−1)|w|

(b) A 1-residual transducer of g : w 7→ (−1)|w||w|.

Fig. 4: Two residual transducers.

Q O

ε ▷ f

f(ε)

a ▷ f

f(a)

b ▷ f f(b)

aa ▷ f

f(aa)

a | 0

b | 0

a | 0

a | aa ▷ f − b ▷ f

0

1

2

3

f(aa) = [f(aa)− f(b)] + f(b)

Fig. 5: Example of a partial execution of Algorithm 1 to build
a k-residual transducer of a function f : A∗ → Z such that
aa ▷ f ∼k b ▷ f . Nodes are labelled by their creation time. At
this stage, Q = {ε ▷ f}, O = {a ▷ f, b ▷ f}. The red node is not
created, and the blue transition is added instead, corresponding
to the “else” branch line 10 of Algorithm 1.

Now, let us describe how to build a k-residual transducer 747

for any f ∈ ZPolyk. As an illustration of how Algorithm 1 748

works, we refer the reader to Figure 5. 749

Algorithm 1: Computing a k-residual transducer of
f ∈ ZPolyk

1 O := {f ▷ ε};
2 Q := ∅;
3 while O ̸= ∅ do
4 choose w ▷ f ∈ O;
5 for a ∈ A do
6 if wa▷ f ̸∼k−1 v ▷ f for all v ▷ f ∈ O ⊎Q then
7 O := O ⊎ {wa▷ f};
8 δ(w ▷ f, a) := wa▷ f ;
9 λ(w ▷ f, a) := 0;

10 else
11 let f ▷ v ∈ O ⊎Q be such that

wa▷ f ∼k−1 v ▷ f ;
12 δ(w ▷ f, a) := v ▷ f ;
13 λ(w ▷ f, a) := wa▷ f − v ▷ f ;
14 end
15 end
16 O := O ∖ {w ▷ f};
17 Q := Q ⊎ {w ▷ f};
18 F (w ▷ f) := f(w);
19 end

Lemma IV.17. Let k ≥ 0. Given f : A∗ → Z such that 750

Res(f)/ ∼k−1 is finite, Algorithm 1 builds a k-residual 751

transducer of f . Its steps are effective given f ∈ ZPolyk. 752

Remark IV.18. In Algorithm 1, we need to “choose” a way 753

to range over the elements of O and the letters of A. Different 754

10

choices may not lead to the same k-residual transducers.755

We deduce from Lemma IV.17 that ZPolyk−1-transducers756

describe exactly the class ZPolyk (Corollary IV.19).757

Corollary IV.19. For all k ≥ 0, ZPolyk is the class of758

functions which can be computed by a ZPolyk−1-transducer.759

Furthermore, the conversions are effective.760

Corollary IV.20 (To be compared to Remark IV.5). For all761

k ≥ 0, ZPolyk = {f : A∗ → Z : Res(f)/ ∼k−1 is finite}.762

V. STAR-FREE Z-POLYREGULAR FUNCTIONS763

In this section, we study the subclass of Z-polyregular764

functions that are built by using only FO-formulas, that we call765

star-free Z-polyregular functions. The term “star-free” will766

be justified in Theorem V.4. As observed in introduction,767

very little is known on deciding FO definability of functions768

(contrary to languages). The main result of this section shows769

that we can decide if a Z-polyregular function is star-free.770

Our proof crucially relies on the canonicity of the residual771

transducer introduced in Section IV. We also provide several772

characterizations of star-free Z-polyregular functions, that773

specialize the results of Section II.774

Definition V.1 (Star-free Z-polyregular). For k ≥ 0, we775

let ZSFk := SpanZ ({#φ : φ ∈ FOℓ, ℓ ≤ k}). Let776

ZSF :=
⋃
k ZSFk, it is the class of star-free Z-polyregular777

functions.778

We also let ZSF−1 := {0}. Similarly to ZPolyk, ZSFk =779

SpanZ({#φ : φ ∈ MSOk} ∪ {1{ε}}).780

Example V.2. ZSF0 is exactly the set of functions of the form781 ∑
i δi1Li

where the δi ∈ Z and the 1Li
are indicator functions782

of star-free languages (compare with Example II.6).783

Example V.3. The function w 7→ |w|a × |w|b is in ZSF1.784

Indeed, the formulas given in Example II.3 are in FO.785

Now, we give an analogue of Theorem II.18 that charac-786

terizes ZSF as Z-rational expressions based on indicators of787

star-free languages, forbidding the use of the Kleene star.788

Theorem V.4. Let f : A∗ → Z, the following are (effectively)789

equivalent:790

1) f is a star-free Z-polyregular function;791

2) f belongs to the smallest class of functions that contains792

the indicator functions of all star-free languages and793

is closed under taking external Z-products, sums and794

Cauchy products.795

Proof. We apologize for the inconvenience of looking back at796

Proposition II.16 and noticing that the property holds mutatis797

mutandis for first-order formulas. In particular, one obtains the798

equivalent of Equation (1) of Theorem II.18799

ZSFk = SpanZ({1L0 ⊗ · · ·⊗1Lk

: L0, . . . , Lk star-free languages}) (3)

and the result follows.800

Example V.5. The function 1A∗a⊗1A∗ : w 7→ |w|a be-801

longs to ZSF1, and the function 1A∗a⊗1A∗ ⊗1bA∗ +802

1A∗b⊗1A∗ ⊗1aA∗ : w 7→ |w|a × |w|b belongs to ZSF2.803

A. Deciding star-freeness 804

Now, we intend to show that given a Z-polyregular function, 805

we can decide if it is star-free. Furthermore, we provide 806

a semantic characterization of star-free Z-polyregular func- 807

tions leveraging ultimate N -polynomiality. We recall (see 808

Definition II.26) that a function f : A∗ → Z is ultimately 1- 809

polynomial when, for all α0, w1, α1, . . . , wℓ, αℓ ∈ A∗, there ex- 810

ists P ∈ Q[X1, . . . , Xℓ], such that f(α0w
X1
1 α1 · · ·wXℓ

ℓ αℓ) = 811

P (X1, . . . , Xℓ), for X1, . . . , Xℓ large enough. Being ultimately 812

1-polynomial generalizes star-freeness for regular languages, 813

as easily observed in Claim V.6. 814

Claim V.6. A regular language L is star-free if and only if 815

1L is ultimately 1-polynomial. 816

Example V.7. It is easy to see that w 7→ |w|a × |w|b is 817

ultimately 1-polynomial. As a counterexample, recall the map 818

f : w 7→ (−1)|w| × |w|. The map f is ultimately 2-polynomial 819

because X 7→ (−1)2X+1(2X + 1) and X 7→ (−1)2X2X are 820

both polynomials. However, f is not ultimately 1-polynomial 821

since X 7→ (−1)XX is not a polynomial. 822

Now, let us state the main theorem of this section. 823

Theorem V.8. Let k ≥ 0 and f ∈ ZPolyk. The following 824

properties are (effectively) equivalent: 825

1) f ∈ ZSF; 826

2) f ∈ ZSFk; 827

3) f is 1-ultimately polynomial. 828

Furthermore, this property is decidable. 829

Let us observe that Theorem V.8 implies an analogue of 830

Theorem III.3 for the classes ZSFk. We conjecture that a direct 831

proof of Corollary V.10 is possible. However, such a proof 832

cannot rely on factorizations forests (that cannot be built in 833

FO), and it would require a (weakened) notion of FO-definable 834

factorization forest as that proposed in [25]. 835

Corollary V.9. ZSFk = ZSF ∩ ZPolyk. 836

Corollary V.10 (FO free variable minimization). Let f ∈ ZSF, 837

then f ∈ ZSFk if and only if |f(w)| = O(|w|k). This property 838

is decidable and the construction is effective. 839

Proof. Let f ∈ ZSF be such that |f(w)| = O(|w|k). By 840

Theorem III.3 we get f ∈ ZPolyk, thus by Theorem V.8, 841

f ∈ ZSFk. All the steps are effective and decidable. 842

The rest of Section V-A is devoted to sketching the proof 843

of Theorem V.8. Given f ∈ ZPolyk, the main idea is to use 844

its k-residual transducer to decide whether f ∈ ZSFk. Indeed, 845

this transducer somehow contains intrinsic information on the 846

semantic of f . We show that star-freeness faithfully translates 847

to a counter-free property of the k-residual transducer, together 848

with an inductive property on the labels of its transitions. 849

Definition V.11 (Counter-free). A deterministic automaton 850

(A,Q, q0, δ) is counter-free if for all q ∈ Q, u ∈ A∗, n ≥ 1, 851

if δ(q, un) = q then δ(q, u) = q (see e.g. [4]). We say that a 852

H-transducer is counter-free if its underlying automaton is so. 853

Example V.12. The ZPoly0-transducer depicted in Figure 4b 854

is not counter-free, since δ(q0, aa) = q0 but δ(q0, a) ̸= q0. 855

11

Theorem V.8 is a direct consequence of the more precise856

Theorem V.13. Note that the semantic characterization (Item 2)857

is not a side result: it is needed within the inductive proof of858

equivalence between the other items.859

Theorem V.13. Let k ≥ 0 and f ∈ ZPolyk, the following860

conditions are equivalent:861

1) f ∈ ZSF;862

2) f is ultimately 1-polynomial;863

3) for all k-residual transducer of f , this transducer is864

counter-free and has labels in ZSFk−1;865

4) there exists a counter-free ZSFk−1-transducer that com-866

putes f ;867

5) f ∈ ZSFk.868

Furthermore, this property is decidable and the constructions869

are effective.870

The proof of Theorem V.13 will be done by induction on871

k ≥ 0. First, let us note that a counter-free transducer computes872

a star-free function (provided that the labels are star-free).873

Lemma V.14. Let k ≥ 0, a counter-free ZSFk−1-transducer874

(effectively) computes a function of ZSFk.875

We show that star-freeness implies ultimate 1-polynomiality.876

This result generalizes ultimately 1-polynomiality of the877

characteristic functions of star-free languages (see Claim V.6).878

Lemma V.15. Let f ∈ ZSF, then f is ultimately 1-polynomial.879

Proof. From Claim V.6 we get that 1L is ultimately 1-880

polynomial if L is star-free. The result therefore immediately881

follows from Theorem V.4 and Lemma II.27.882

Last but not least, we show that ultimate 1-polynomiality im-883

plies that any k-residual transducer is counter-free. Lemma V.16884

is the key ingredient for showing Theorem V.13.885

Lemma V.16. Let k ≥ 0. Let f ∈ ZPolyk which is ultimately886

1-polynomial and T be a k-residual transducer of f . Then T is887

counter-free and its label functions are ultimately 1-polynomial.888

Proof of Theorem V.13. The (effective) equivalences are889

shown by induction on k ≥ 0. For Item 5 ⇒ Item 1, the890

implication is obvious. For Item 1 ⇒ Item 2 we apply891

Lemma V.15. For Item 2 ⇒ Item 3, we use Lemma V.16892

which shows that any k-residual transducer of f is counter-893

free and has ultimately 1-polynomial labels. Since these labels894

are in ZPolyk−1, then by induction hypothesis they belong895

to ZSFk−1. For Item 3 ⇒ Item 4, the result follows because896

there exists a k-residual transducer computing f . For Item 4897

⇒ Item 5 we use Lemma V.14.898

It remains to see that this property can be decided, which is899

also shown by induction on k ≥ 0. Given f ∈ ZPolyk, we can900

effectively build a k-residual transducer of f by Lemma IV.17.901

If it is not counter-free, the function is not star-free polyregular.902

Otherwise, we can check by induction that the labels belong903

to ZSFk−1 (since they belong to ZPolyk−1).904

B. Relationship with polyregular functions and rational series905

Let us now specialize the multiple characterizations of ZPoly906

presented in Section II to ZSF, which completes the third907

column of Table I. 908

Bojańczyk [7, page 13] introduced the notion of first-order 909

(definable) polyregular functions. It is an easy check that star- 910

free Z-polyregular functions are obtained by post composition 911

with sum, in a similar way as Proposition II.11. 912

Proposition V.17. The class ZSF is (effectively) the class 913

of functions sum ◦f where f : A∗ → {±1}∗ is first-order 914

polyregular. 915

Now, let us provide a description of ZSF in terms of 916

eigenvalues in the spirit of Theorem II.28. Intuitively, it shows 917

that a linear representation (I, µ, F) computes a function 918

in ZSF if and only if Spec(µ(A∗)) contains no non-trivial 919

subgroup, mimicking the notion of aperiodicity for monoids 1. 920

Theorem V.18 (Star-free). Let f : A∗ → Z, the following are 921

(effectively) equivalent: 922

1) f is a star-free Z-polyregular function; 923

2) f is a Z-rational series and for all minimal linear 924

representation (I, µ, F) of f , Spec(µ(A∗)) ⊆ {0, 1}; 925

3) f is a Z-rational series and there exists a linear represen- 926

tation (I, µ, F) of f such that Spec(µ(A∗)) ⊆ {0, 1}. 927

Proof. For Item 2 ⇒ Item 3, the result is obvious. 928

For Item 1 ⇒ Item 2, consider a minimal presentation of f 929

using (I, µ, F) of dimension n. Then consider a word w, λ a 930

complex eigenvalue of µ(w). Thanks to Lemma II.25, there 931

exists w,αi,j , ui, vj ∈ A∗ for 1 ≤ i, j ≤ n such that λX = 932∑n
i,j=1 αi,jf(viw

Xuj). Because f ∈ ZSF, f is ultimately 1- 933

polynomial thanks to Theorem V.13. This entails that X 7→ λX 934

is a polynomial for X large enough. Therefore, λ ∈ {0, 1}. 935

For Item 3 ⇒ Item 1, let us prove that the computed 936

function is ultimately 1-polynomial, which is enough thanks 937

to Theorem V.13. Because the eigenvalues of the matrix 938

µ(w) ∈ Mn,n(Z) for w ∈ A∗ are all in {0, 1}, its characteris- 939

tic polynomial splits over Q, hence there exists P ∈ Mn,n(Q) 940

such that T := PMwP
−1 is upper triangular with diagonal 941

values in {0, 1}. In particular, µ(w)X = P−1TXP , but a 942

simple induction proves that the coefficients of TX are in 943

Q[X] for large enough X , hence so does µ(w)X . Pumping 944

multiple patterns at once only computes sums of products of 945

polynomials, hence the function is ultimately 1-polynomial. 946

Thanks to Theorem V.13, it is star-free Z-polyregular. 947

Remark V.19. When showing Item 3 ⇒ Item 1, we have 948

in fact shown that the following weaker form of ultimate 1- 949

polynomiality characterizes ZSF among Z-rational series: for 950

all u,w, v ∈ A∗, there exists P ∈ Q[X], such that f(uwXv) = 951

P (X), for X large enough. 952

Beware that Remark V.19 slightly differs from Remark II.30: 953

the latter deals with a polynomial upper bound, whereas an 954

equality is needed to characterize star-freeness. 955

Example V.20. Let u, v, w ∈ A∗, then |1odd(uw
Xv)| ≤ 1 for 956

every X ≥ 0. However, 1odd ̸∈ ZSF. 957

As a concluding example, let us observe that our notion 958

of star-free Z-polyregular functions differs from the functions 959

1Beware: the spectrum of a linear representation may not be a semigroup.

12

definable in the weighted first order logic introduced by Droste960

and Gastin [26, Section 4] when studying rational series.961

Example V.21. Thanks to [26, Theorem 1], the map f : w 7→962

(−1)|w||w| is definable in weighted first order logic (however,963

f ̸∈ ZSF as shown in Example V.7). Similarly, the indicator964

function 1odd is also definable in weighted first order logic, even965

though the language of words of odd length is not star-free.966

VI. OUTLOOK967

This paper describes a robust class of functions, which968

admits several characterizations in terms of logics, rational969

expressions, rational series and transducers. Furthermore, two970

natural class membership problems (free variable minimization971

and first-order definability) are shown decidable. We believe972

that these results together with the technical tools introduced973

to prove them open the range towards a vast study of Z- and974

N-polyregular functions. Now, let us discuss a few tracks which975

seem to be promising for future work.976

Weaker logics: Boolean combinations of existential first-977

order formulas define a well-known subclass of first-order logic,978

often denoted B(∃FO). Over finite words, B(∃FO)-sentences979

describe the celebrated class of piecewise testable languages980

(see e.g. [6]). In our quantitative setting, one could define for all981

k ≥ 0 the class of linear combinations of the counting formulas982

from B(∃FO)k, as we did for ZPolyk (resp. ZSFk) with MSOk983

(resp. FOk). While this class seems to be a good candidate984

for defining “piecewise testable Z-polyregular functions”, it985

does not admit a free variable minimization theorem depending986

on the growth rate of the functions. Indeed, let A := {a, b}987

and consider the indicator function 1aA∗ = #φ for φ(x) :=988

a(x) ∧ ∀y.y ≥ x ∈ B(∃FO)1. Even if |1aA∗(w)| = O(1),989

this function cannot be written as a linear combination of990

counting formulas from B(∃FO)0. Indeed, if we assume the991

converse, then 1aA∗ could be written
∑n
i=1 δi1Li

for some992

piecewise testable languages Li, which implies that aA∗ would993

be piecewise testable, which is not the case.994

Star-free N-polyregular functions: A very natural question995

is, given an N-polyregular function (recall that it is an element996

of NPoly := SpanN(#φ : φ ∈ MSO)) to decide whether it997

is in fact a star-free N-polyregular function (i.e. an element998

of NSF := SpanN(#φ : φ ∈ FO)). In this setting, we999

conjecture that NSF = NPoly ∩ ZSF. This question seems1000

to be challenging. Indeed, the techniques introduced in the1001

current paper cannot directly be applied to solve it, since the1002

residual automaton (see Section V) of a N-polyregular function1003

may need labels which are not N-polyregular, or even not1004

nonnegative. In other words, replacing the output group by an1005

output monoid seems to prevent from representing the functions1006

with canonical objects based on residuals.1007

Polynomial functions and sequential products: It is worth1008

mentioning that the model of Z-polyregular functions as1009

defined here does not coincide with what is sometimes1010

called “Newton polynomial functions” [27, Proposition 3.1].1011

Newton polynomial functions over (Z,+) are precisely the Z-1012

polyregular functions f such that |Res(f)/ ∼k | = 1 for every1013

k ∈ N [27, Theorem 3.2]. As Newton polynomial functions1014

can be valued in any group G, it begs the question of the1015

generalization of Z-polyregular functions to G-polyregular 1016

functions. To our knowledge, the proof techniques developed 1017

in this paper cannot be applied to a non-commutative output 1018

group. Even for commutative groups, first-order definability 1019

becomes less meaningful as the indicator function 1even is first- 1020

order definable (using one free variable) when G = (Z/2Z,+). 1021

Star-free Z-rational series: In Figure 1, there is no gen- 1022

eralization of the class ZSF among the whole class of Z- 1023

rational series. We are not aware of a way to define a class 1024

of “star free Z-rational series”, neither with logics nor with Z- 1025

rational expressions. Indeed, allowing the use of Kleene star for 1026

series automatically builds the whole class of Z-rational series 1027

(including the indicator functions of all regular languages). 1028

From a logical standpoint, it is tempting to go from 1029

polynomial behaviors to exponential ones by shifting from 1030

first-order free variables to second order free variables. While 1031

this approach actually captures the whole class of Z-rational 1032

series, it fails to circumscribe star-freeness. To make the above 1033

statement precise, let us write MSOX (resp. FOX) as the set 1034

of MSO (resp. FO) formulas with free second-order variables, 1035

i.e. of the shape φ(X1, . . . , Xk). Given φ ∈ MSOX , we let 1036

#φ(w) : A∗ → Z be the function that counts second-order 1037

valuations. As an example of the expressiveness of this model, 1038

let us illustrate how to compute w 7→ (−2)|w| ̸∈ ZPoly. 1039

Example VI.1. Let φ(X) := X , then #φ(w) = 2|w|. Let 1040

ψ(X) be the first-order formula stating that X contains the 1041

first position of the word, X contains the last position of the 1042

word, and if x ∈ X , then x+ 1 ̸∈ X and x+ 2 ∈ X . It is an 1043

easy check that #ψ = 1even, even though ψ ∈ FOX (but recall 1044

that 1even is the indicator function of a non star-free regular 1045

language). Now, w 7→ (−2)|w| equals #φ× (2#ψ − 1). 1046

We are now ready to explain formally how both FOX and 1047

MSOX captures Z-rational series. 1048

Proposition VI.2. For every function f : A∗ → Z, the 1049

following are equivalent: 1050

1) f is a Z-rational series; 1051

2) f ∈ SpanZ({#φ : φ ∈ MSOX}); 1052

3) f ∈ SpanZ({#φ : φ ∈ FOX}). 1053

In our setting, it seems natural to say that w 7→ 2|w| should 1054

be a star-free Z-rational series, contrary to w 7→ (−2)|w| (as 1055

observed in Example V.21, this approach contrasts with the 1056

weighted logics of Droste and Gastin [26], for which (−2)|w| is 1057

considered as “star free”). Recall that in Theorem V.18, we have 1058

characterized ZSF as the class of series whose spectrum falls 1059

in {0, 1}. Following this result, we conjecture that a “good” 1060

notion of star-free Z-rational series could be those whose 1061

spectrum falls in the set R+ of nonnegative real numbers. This 1062

way, exponential growth is allowed (e.g. for w 7→ 2|w|) but no 1063

periodic behaviors (e.g. for w 7→ (−2)|w|). 1064

13

REFERENCES1065

[1] S. C. Kleene et al., “Representation of events in nerve nets and finite1066

automata,” Automata studies, vol. 34, pp. 3–41, 1956.1067

[2] J. R. Büchi, “Weak second-order arithmetic and finite automata,”1068

Mathematical Logic Quarterly, vol. 6, no. 1-6, 1960.1069

[3] M. P. Schützenberger, “On the definition of a family of automata,” Inf.1070

Control., vol. 4, no. 2-3, pp. 245–270, 1961.1071

[4] R. McNaughton and S. A. Papert, Counter-Free Automata. The MIT1072

Press, 1971.1073

[5] M. P. Schützenberger, “On finite monoids having only trivial subgroups,”1074

Information and Control, vol. 8, no. 2, pp. 190–194, Apr. 1965.1075

[6] D. Perrin and J.-E. Pin, “First-order logic and star-free sets,” Journal of1076

Computer and System Sciences, vol. 32, no. 3, pp. 393–406, 1986.1077

[7] M. Bojańczyk, “Polyregular Functions,” 2018. [Online]. Available:1078

https://arxiv.org/abs/1810.087601079

[8] D. Scott, “Some definitional suggestions for automata theory,” Journal1080

of Computer and System Sciences, vol. 1, no. 2, pp. 187–212, 1967.1081

[9] E. Filiot, O. Gauwin, and N. Lhote, “Aperiodicity of rational functions is1082

pspace-complete,” in 36th IARCS Annual Conference on Foundations of1083

Software Technology and Theoretical Computer Science (FSTTCS 2016).1084

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016.1085

[10] E. Filiot, O. Gauwin, N. Lhote, and A. Muscholl, “On canonical models1086

for rational functions over infinite words,” in 38th IARCS Annual1087

Conference on Foundations of Software Technology and Theoretical1088

Computer Science (FSTTCS), vol. 122. Schloss Dagstuhl–Leibniz-1089

Zentrum fuer Informatik, 2018.1090

[11] J. Berstel and C. Reutenauer, Noncommutative rational series with1091

applications. Cambridge University Press, 2011, vol. 137.1092

[12] M. P. Schützenberger, “Finite counting automata,” Information and1093

control, vol. 5, no. 2, pp. 91–107, 1962.1094

[13] G. Douéneau-Tabot, “Pebble transducers with unary output,” in 46th1095

International Symposium on Mathematical Foundations of Computer1096

Science, MFCS 2021, 2021.1097

[14] M. Bojańczyk, “Transducers of polynomial growth,” in Proceedings of1098

the 37th Annual ACM/IEEE Symposium on Logic in Computer Science,1099

2022, pp. 1–27.1100

[15] G. Douéneau-Tabot, “Pebble minimization: the last theorems,” in 26th1101

International Conference on Foundations of Software Science and1102

Computation Structures, FoSSaCS 2023, 2023.1103

[16] M. Bojańczyk, “The growth rate of polyregular functions,” 2022.1104

[Online]. Available: https://arxiv.org/abs/2212.116311105

[17] W. Thomas, “Languages, automata, and logic,” in Handbook of formal1106

languages. Springer, 1997, pp. 389–455.1107

[18] G. Douéneau-Tabot, “Hiding pebbles when the output alphabet is1108

unary,” in 49th International Colloquium on Automata, Languages, and1109

Programming, ICALP 2022, 2022.1110

[19] J. Engelfriet and H. J. Hoogeboom, “MSO definable string transductions1111

and two-way finite-state transducers,” ACM Transactions on Computa-1112

tional Logic (TOCL), vol. 2, no. 2, pp. 216–254, 2001.1113

[20] M. Bojanczyk, S. Kiefer, and N. Lhote, “String-to-String Interpretations1114

With Polynomial-Size Output,” in 46th International Colloquium on1115

Automata, Languages, and Programming (ICALP 2019), 2019.1116

[21] J. P. Bell, “A gap result for the norms of semigroups of matrices,” Linear1117

Algebra and its Applications, vol. 402, pp. 101–110, 2005.1118

[22] I. Simon, “Factorization forests of finite height,” Theor. Comput. Sci.,1119

vol. 72, no. 1, pp. 65–94, 1990.1120

[23] T. Colcombet, “Green’s relations and their use in automata theory,”1121

in International Conference on Language and Automata Theory and1122

Applications. Springer, 2011, pp. 1–21.1123

[24] G. Douéneau-Tabot, E. Filiot, and P. Gastin, “Register transducers are1124

marble transducers,” in 45th International Symposium on Mathematical1125

Foundations of Computer Science, MFCS 2020, 2020.1126

[25] T. Colcombet, S. van Gool, and R. Morvan, “First-order separation over1127

countable ordinals,” in Foundations of Software Science and Computation1128

Structures, ser. Lecture Notes in Computer Science, P. Bouyer and1129

L. Schröder, Eds. Cham: Springer International Publishing, 2022, pp.1130

264–284.1131

[26] M. Droste and P. Gastin, “Aperiodic weighted automata and weighted1132

first-order logic,” in 44th International Symposium on Mathematical1133

Foundations of Computer Science, MFCS 2019, vol. 138, 2019.1134

[27] J.-E. Pin and C. Reutenauer, “A Mahler’s Theorem for Word Func-1135

tions,” in 46th International Colloquium on Automata, Languages, and1136

Programming (ICALP 2019), 2019.1137

https://arxiv.org/abs/1810.08760
https://arxiv.org/abs/2212.11631

i

APPENDIX A1138

PROOFS OF SECTION II1139

A. Proof of Proposition II.101140

In this section, we show that the functions of ZPolyk are closed by precomposition under1141

a regular function. This proof is somehow classical and inspired by well-known composition1142

techniques for MSO-transductions.1143

Definition A.1 (Transduction). A (k-copying) MSO-transduction from A∗ to B∗ consists in1144

several MSO formulas over A:1145

• for all 1 ≤ j ≤ k, a formula φDom
j (x) ∈ MSO1;1146

• for all 1 ≤ j ≤ k and a ∈ B, a formula φaj (x) ∈ MSO1;1147

• for all 1 ≤ j, j′ ≤ k, a formula φ<j,j′(x, x
′) ∈ MSO2.1148

Let w ∈ A∗, we define the domain D(w) := {(i, j) : 1 ≤ i ≤ |w|, 1 ≤ j ≤ k,w |= φDom
j (i)}.1149

Using the formulas φbj(x) (resp. φ<j,j′(x, x
′)), we can label the elements of D(w) with letters of1150

B (resp. define a relation < on the elements of D(w)). The transduction is defined if and only1151

if the structure D(w) equipped with the labels and < is a word v ∈ B∗, for all w ∈ A∗. In this1152

case, the transduction computes the function that maps w ∈ A∗ to this v ∈ B∗.1153

It follows from [19] that regular functions can (effectively) be described by MSO-transductions.1154

Claim A.2. Let ℓ ≥ 0, k ≥ 1, ψ(x1, . . . , xℓ) ∈ MSOℓ be a formula over B and f : A∗ →1155

B∗ be computed by a k-copying MSO-transduction. Let us write W := {x1, . . . , xℓ}{1,...,k}.1156

There exists formulas θρ ∈ MSOℓ over A where ρ ranges in W , such that for all w ∈ A∗,1157

#φ(f(w)) =
∑
ρ∈W #θρ(w).1158

Proof Sketch. Assume that the transduction is given by formulas φDom
j (x), φaj (x) ∈ MSO1 for

a ∈ B and φ<j,j′(x, x
′) ∈ MSO2 as in Definition A.1. Let ψ be an MSO formula over B with

first order variables x1, . . . , xℓ and second order variables (X1, . . . , Xk), (Y1, . . . , Yk), Let
ρ be a mapping from {x1, . . . , xℓ} to {1, . . . , k}. We define by induction on ψ the formula ψρ
as follows (it roughly translates the formula from B to A using the transduction):

(∃x.φ)ρ :=
k∨
j=1

∃x.φDom
j (x) ∧ φρ+[x 7→j]

(∃X.φ)ρ := ∃X1, . . . , Xk.

k∧
j=1

(∀x ∈ Xj , φ
Dom
j (x)) ∧ φρ

(¬φ)ρ := ¬(φρ)
(φ ∨ φ′)ρ := φρ ∨ φ′ρ
(Pa(x))ρ := φaρ(x)(x)

(x < y)ρ := φ<ρ(x),ρ(y)(x, y).

(x ∈ X)ρ :=

k∨
j=1

φDom
j (x) ∧ (x ∈ Xj)

It is then a mechanical check that the translation works as expected. In the following equation,
we fix w ∈ A∗ and we let pos : D(w) → [1:|f(w)|] be the function that maps a tuple (i, j)
to the corresponding position in the word f(w) ∈ B∗. To simplify notations, given ρ ∈
W , a word w ∈ A∗, and a valuation τ : {x1, . . . , xℓ} → [1:|w|], we write pos[τ × ρ](x⃗) :=
pos(τ(x1), ρ(x1)), . . . , pos(τ(xℓ), ρ(xℓ)).

#φ(f(w)) = #{ν : {x1, . . . , xℓ} → [1:|f(w)|] : f(w) |= ψ(ν(x1), . . . , ν(xℓ))}
=
∑
ρ∈W

#{τ : {x1, . . . , xℓ} → [1:|w|] : f(w) |= ψ(pos[τ × ρ](x⃗))}

=
∑
ρ∈W

#{ν : {x1, . . . , xℓ} → {1, . . . , |w|} : w |= ψρ(ν) ∧
ℓ∧
i=1

φDom
ρ(xi)

(xi)}

We then let θρ := ψρ ∧
∧ℓ
i=1 φ

Dom
ρ(xi)

(xi) to conclude.1159

ii

The result follows immediately since ZPolyℓ is closed under taking sums and Z-external 1160

products. 1161

B. Proof of Proposition II.11 1162

We first show that any Z-polyregular function can be written under the form sum ◦g where 1163

g : A∗ → {±1}∗ is polyregular. This is an immediate consequence of the following claims. 1164

Claim A.3. For all φ ∈ MSO, there exists a polyregular function f : A∗ → {±1}∗ such that 1165

#φ = sum ◦f . 1166

Proof. Polyregular functions are characterized in [20, Theorem 7] as the functions computed by 1167

(multidimensional) MSO-interpretations. Recall that an MSO-interpretation of dimension k ∈ N 1168

is given by a formula φ≤(x⃗, y⃗) defining a total ordering over k-tuples of positions, a formula 1169

φDom(x⃗) that selects valid positions, and formulas φa(x⃗) that place the letters over the output 1170

word [20, Definition 1 and 2]. In our specific situation, letting φ≤ be the usual lexicographic 1171

ordering of positions (which is MSO-definable) and placing the letter 1 over every element of 1172

the output is enough: the only thing left to do is select enough positions of the output word. 1173

For that, we let φDom be defined as φ itself. It is an easy check that this MSO-interpretation 1174

precisely computes 1f(w) over w, hence computes f when post-composed with sum. 1175

Claim A.4. The set {sum ◦f : f : A∗ → {±1}∗ polyregular} is closed under sums and external 1176

Z-products. 1177

Proof. Notice that sum ◦f+sum ◦g = sum ◦(f ·g) where f ·g(w) := f(w) ·g(w). As polyregular 1178

functions are closed under concatenation [7], the set of interest is closed under sums. To prove 1179

that it is closed under external Z-products, it suffices to show that it is closed under negation. 1180

This follows because one can permute the 1 and −1 in the output of a polyregular function 1181

(polyregular functions are closed under post-composition by a morphism). 1182

Let us consider a polyregular function g : A∗ → {±1}∗. The maps g+ : w 7→ |g(w)|1 and 1183

g− : w 7→ |g(w)|−1 are polyregular functions with unary output (since they correspond to a 1184

post-composition by the regular function which removes some letter, and polyregular functions 1185

are closed under post-composition by a regular function [7]). Hence g− and g+ are polyregular 1186

functions with unary output, a.k.a. N-polyregular functions. As a consequence, sum◦g = g+−g− 1187

lies in ZPoly. 1188

APPENDIX B 1189

PROOFS OF SECTION II-C 1190

A. Proof of Claim II.15 1191

Let f ∈ ZPolyk and g ∈ ZPolyℓ, we (effectively) show that f ⊗ g ∈ ZPolyk+ℓ+1. 1192

First, observe that if f, g, h : A∗ → Z and γ, δ ∈ Z, then (γf+δg)⊗h = γ(f ⊗ g)+δ(g⊗h).
Thus it is sufficient to show the result for f = #φ and g = #ψ with φ(x1, . . . , xk) ∈ MSOk
and ψ(y1, . . . , yℓ) ∈ MSOℓ. For all w ∈ A∗ we have:

(#φ⊗#ψ)(w) =
∑

0≤i≤|w|

∑
i1,...,ik≤i

∑
j1,...,jℓ>i

1w[1:i]|=φ(i1,...,ik) × 1w[i+1:|w|]|=ψ′(j1,...,jℓ)

= #φ(ε) ·#ψ(w)

+
∑

1≤i≤|w|

∑
i1,...,ik≤i

∑
j1,...,jℓ>i

1w[1:i]|=φ(i1,...,ik) × 1w[i+1:|w|]|=ψ′(j1,...,jℓ)

= #φ(ε) ·#ψ(w) + #(φ′(z, x1, . . . , xk) ∧ ψ′(z, y1, . . . , yl))(w)

where φ′(z, x1, . . . , xk) ∈ MSOk+1 is a formula such that w |= φ′(i, i1, . . . , ik) if and only if 1193

i1, . . . , ik ≤ i and w[1:i] |= φ(i1, . . . , ik) (this is a regular property which is MSO definable), 1194

and similarly for ψ′. 1195

iii

B. Proof of Proposition II.161196

Let k ≥ 0, we want to show that ZPolyk+1 = SpanZ ({1L⊗ f : L regular, f ∈ ZPolyk}).
Observe that for all f : A∗ → Z, 1{ε}⊗ f equals f , therefore ZPolyk ⊆
SpanZ ({1L⊗ f : L regular, f ∈ ZPolyk}). As in the proof of Claim II.15, it is sufficient to
show that #φ for φ(x1, . . . , xk+1) ∈ MSOk+1, can be written as a linear combination of 1L⊗ f
where L is a regular language. Observe that for all w ∈ A+, for all valuation i1, . . . , ik of
x1, . . . , xk, we can define P := {1 ≤ j ≤ k : ij = min{i1, . . . , ik}} (i.e. the xj for j ∈ P are
the variables with minimal value). Therefore, for all w ∈ A+:

#φ(w) =
∑

∅⊊P⊆[1:k]

∑
w=uv,u̸=ε

#(φ ∧
∧
j∈P

xj = |u| ∧
∧
j ̸∈P

xj > |u|)(w).

It is an easy check that one can (effectively) build a regular language LP ⊆ A+ and a formula1197

ψP such that for all u ∈ A+, v ∈ A∗, uv |= φ∧
∧
j∈P (xj = |u|)∧ (

∧
j ̸∈P xj > |u|) if and only1198

if u ∈ LP and v |= ψP ((xj)j ̸∈P). Thus, for all w ∈ A+:1199

#φ(w) =
∑

∅⊊P⊆[1:k]

∑
w=uv

1LP (u)×#ψP (v)

=
∑

∅⊊P⊆[1:k]

(1LP ⊗#ψP)

︸ ︷︷ ︸
:=g

(w) .

Notice that ψP has exactly k − |P | ≤ k − 1 free-variables, thus g belongs to1200

SpanZ ({1L⊗ f : L regular, f ∈ ZPolyk}). Observe moreover that g(ε) = 0 = #φ(ε) because1201

k + 1 > 0.1202

APPENDIX C1203

PROOFS OF SECTION II-D1204

A. Proof of Lemma II.251205

Let f : A∗ → Z be a Z-rational series and (I, µ, F) be a minimal Z-linear representation of
f of dimension n. First note that (I, µ, F) is also a minimal Q-linear representation of f by
[11, Theorem 1.1 p 121] (Q-linear representations are defined by allowing rational coefficients
whithin the matrices and vectors, instead of integers). Let w ∈ A∗, λ ∈ Spec(µ(w)) and consider
a complex eigenvector V ∈ Mn,1(C) associated to λ. We let ||V || := tV V , observe that it
is a positive real number. Because (I, µ, F) is a minimal Q-linear representation of f , then
SpanQ({µ(u)F : u ∈ A∗}) = Qn by [11, Proposition 2.1 p 32]. Hence there exists numbers
αj ∈ C and words uj ∈ A∗ such that V =

∑n
j=1 αjµ(uj)F . Symmetrically by [11, Proposition

2.1 p 32], there exists numbers βi ∈ C and words vi ∈ A∗ such that tV =
∑n
i=1 βiIµ(vi).

Therefore:

λX ||V || = tV µ(w)XV =

n∑
i,j=1

αiβjIµ(viw
Xuj)F =

n∑
i,j=1

αiβjf(viw
Xuj).

The result follows since ||V || ≠ 0 (it is an eigenvector).1206

B. Proof of Lemma II.271207

If L is a regular language, the fact that 1L is N -polynomial for some N ≥ 0 follows from the1208

traditional pumping lemmas. Now let f, g : A∗ → Z be respectively ultimately N1-polynomial1209

and ultimately N2-polynomial. The fact that f + g and δf for δ ∈ Z are ultimately (N1 ×N2)-1210

polynomial is obvious. In the rest of Section C-B, we focus on the main difficulty which is the1211

Cauchy product of two functions. For that, we will first prove the following claim about Cauchy1212

products of polynomials.1213

Claim C.1. For every p ∈ N,
∑X
i=0 i

p is a polynomial in X .1214

Proof. It is a folklore result, but let us prove it using finite differences. If f : N → Q, let1215

∆f : n 7→ f(n+ 1)− f(n). Let us now prove by induction that every function f : N → Q such1216

that ∆pf = 0 for some p ≥ 1 is a polynomial. For p = 1, this holds because f must be constant.1217

iv

For p + 1 > 1, if we assume that ∆p+1f = 0, then ∆pf is a constant C. Let g := f − C np

p! , 1218

and remark that ∆pg = 0. By induction hypothesis g is a polynomial, hence so is f . 1219

Finally, a simple induction proves that ∆p+2(X 7→
∑X
i=0 i

p) = 0. 1220

Claim C.2. Let P,Q ∈ Q[X,Y1, . . . , Yℓ] be two multivariate polynomials, then their 1221

Cauchy product P ⊗Q(X,Y1, . . . , Yℓ) :=
∑X
i=0 P (i, Y1, . . . , Yℓ)Q(Y − i, Y1, . . . , Yℓ) belongs 1222

to Q[X,Y1, . . . , Yℓ]. 1223

Proof. By linearity of the Cauchy product, it suffices to check that the result holds for products 1224

of the form (XpY p11 · · ·Y pℓℓ)⊗(XqY q11 · · ·Y qℓℓ) = (Xp⊗Xq)×Y p11 · · ·Y pℓℓ Y q11 · · ·Y qℓℓ . Hence, 1225

the only thing left to check is that Xp⊗Xq is a polynomial in X . 1226

Xp⊗Xq(Y) =

Y∑
i=0

ip(Y − i)q

=

Y∑
i=0

ip
q∑

k=0

(
q

k

)
Y k(−i)q−k

=

q∑
k=0

(
q

k

)
Y k

Y∑
i=0

ip(−i)q−k

=

q∑
k=0

(
q

k

)
(−1)q−kY k

Y∑
i=0

ip+q−k

Which is a polynomial thanks to Claim C.1. 1227

Let us now prove that f ⊗ g is ultimately N := (N1×N2)-polynomial. For that, let us consider 1228

α0, u1, α1, . . . , uℓ, αℓ ∈ A∗ and prove that (f ⊗ g)(α0u
NX1
1 α1 · · ·uNXℓ

ℓ αℓ) is a polynomial for 1229

X1, . . . , Xℓ large enough. 1230

(f ⊗ g)(α0u
NX1
1 α1 · · ·uNXℓ

ℓ αℓ) = f(α0u
NX1
1 α1 · · ·uNXℓ

ℓ αℓ)g(ε)

+

ℓ∑
j=0

|αj |−1∑
i=0

f(α0u
NX1
1 α1 · · ·u

NXj

j (αj [1:i]))

× g((αj [i+1:|αj |])u
NXj+1

j+1 · · ·αℓ)

+

ℓ∑
j=1

|uN
j |−1∑
i=0

Xj−1∑
Y=0

f(α0u
NX1
1 α1 · · ·uNYj (uNj [1:i]))×

g((uNj [i+1:|uNj |])uN(Xj−Y−1)
j · · ·αℓ)

From the hypothesis on f , we deduce that the first term of this sum is ultimately N1-polynomial, 1231

hence ultimately N -polynomial. We conclude similarly for the second term of this sum, because 1232

the product of two polynomials is a polynomial. 1233

Let us now focus on the third term. Using the induction hypotheses on f and g, there
exists polynomials Pj,i and Qj,i such that the following equalities ultimately hold, where
(X1, . . . , X̂j , . . . Xℓ) denotes the tuple obtained by removing the j-th element from (X1, . . . , Xℓ):

f(α0u
NX1
1 α1 · · ·uNYj (uNj [1:i])) = Pj,i(Y,X1, . . . , X̂j , . . . Xℓ)

g((uNj [i+1:|uNj |])uN(Xj−Y−1)
j · · ·αℓ) = Qj,i(Y,X1, . . . , X̂j , . . . Xℓ)

v

As a consequence, we can rewrite the third term as a Cauchy product of polynomials for large
enough values of X1, . . . , Xℓ:

ℓ∑
j=1

|uN
j |−1∑
i=0

Xj−1∑
Y=0

f(α0u
NX1
1 α1 · · ·uNYj (uNj [1:i]))g((uNj [i+1:|uNj |])uN(Xj−Y−1)

j · · ·αℓ)

=

ℓ∑
j=1

|uj |−1∑
i=0

Xj−1∑
Y=0

Pj,i(Y,X1, . . . , X̂j , . . . , Xℓ)Qj,i(Xj − Y − 1, X1, . . . , X̂j , . . . , Xℓ)

=

ℓ∑
j=1

|uj |−1∑
i=0

Pi,j ⊗Qj,i(Xj − 1)

Thanks to Claim C.2, we conclude that this third term is also ultimately a polynomial.1234

APPENDIX D1235

PROOFS OF SECTION III1236

A. Proof of Lemma III.141237

First of all, given a leaf x ∈ Leaves(F), Skel(x) = {x} contains x. Hence, every leaf is1238

contained in at least one skeleton. It remains to show that if t and t′ are two nodes such that1239

x ∈ Skel(t) and x ∈ Skel(t′), then Skel(t) ⊆ Skel(t′) or the converse holds.1240

As Skel(t) contains only children of t, one deduces that x is a children of both t and t′.1241

Because F is a tree, parents of x are totally ordered by their height in the tree. As a consequence,1242

without loss of generality, one can assume that t is a parent of t′. Because Skel(t) is a subforest1243

of F containing x, it must contain t′. Now, by definition of skeletons, it is easy to see that1244

whenever t′ ∈ Skel(t), we have Skel(t′) ⊆ Skel(t).1245

B. Proof of Claim III.181246

Let x ∈ Leaves(F), we show that the number of x′ such that x′ depends-onx is bounded1247

(independently from x and F ∈ Fµ
d). Observe that skel-root(x′) is either an ancestor or the1248

sibling of an ancestor of skel-root(x). Observe that for all t ∈ Nodes(F), Skel(t) is a binary1249

tree of height at most d, thus is has at most 2d leaves. Moreover, skel-root(x) has at most d1250

ancestors and 2d immediate siblings of its ancestors. As a consequence, there are at most 3d×2d1251

leaves that depend on x.1252

C. Proof of Lemma III.191253

Let d ≥ 0, M be a finite monoid, µ : A∗ → M , k ≥ 1, and ψ ∈ INVk. We want to build a1254

function g ∈ ZPolyk−1 such that for every F ∈ Fµ
d , g(F) = #(ψ(x⃗) ∧ sym-dep(x⃗))(F) (since1255

Fµ
d is a regular language of Â∗, it does not matter how g is defined on inputs F ̸∈ Fµ

d).1256

First, we use the lexicographic order to find the first pair (xi, xj) that is dependent in the
tuple x⃗. This allows to partition our set of valuations as follows:

{x⃗ ∈ Leaves(F) : F, x⃗ |= ψ ∧ sym-dep(x⃗)}

=
⊎

1≤i<j≤n

{x⃗ ∈ Leaves(F) : F, x⃗ |= ψ ∧ sym-dep(xi, xj) ∧
∧

(k,ℓ)<lex(i,j)

¬ sym-dep(xk, xℓ)}

=
⊎

1≤i<j≤n

{x⃗ ∈ Leaves(F) : F, x⃗ |= ψ ∧ xj depends-onxi ∧
∧

(k,ℓ)<lex(i,j)

¬ sym-dep(xk, xℓ)︸ ︷︷ ︸
:=ψi→j(x⃗)

}

∪ {x⃗ ∈ Leaves(F) : F, x⃗ |= ψ ∧ xi depends-onxj ∧
∧

(k,ℓ)<lex(i,j)

¬ sym-dep(xk, xℓ)︸ ︷︷ ︸
:=ψi←j(x⃗)

}

As a consequence, #(ψ ∧ sym-dep) =
∑

1≤i<j≤n#ψi→j +#ψi←j −#ψi→j ∧ ψi←j (the last1257

term removes the cases when both xi depends-onxj and xj depends-onxi, which occurs e.g.1258

when xi = xj).1259

vi

We can now rewrite this sum using ∃=ℓ xj .ψ to denote the fact that there exists exactly ℓ 1260

different values for x so that ψ(. . . , xj , . . .) holds (this quantifier is expressible in MSO at every 1261

fixed ℓ). Thanks to Claim III.18, there exists a bound Nd over the maximal number of leaves 1262

that dependent on a leaf xi (among forests of depth at most d.) Hence: 1263

#(ψ ∧ sym-dep) =
∑

1≤i<j≤n

#ψi→j +#ψi←j −#ψi→j ∧ ψi←j

=
∑

1≤i<j≤n

∑
0≤ℓ≤Nd

ℓ ·#∃=ℓxj .ψi→j

+
∑

1≤i<j≤n

∑
0≤ℓ≤Nd

ℓ ·#∃=ℓxi.ψi←j

−
∑

1≤i<j≤n

∑
0≤ℓ≤Nd

ℓ ·#∃=ℓxi.ψi→j ∧ ψi←j

D. Proof of Lemma III.23 1264

In order to prove Lemma III.23, we consider f such that findep ̸= 0. Our goal is to construct 1265

a pumping family to exhibit a growth rate of findep. To construct such a pumping family, we 1266

will rely on the fact that independent tuples of leaves have a very specific behavior with respect 1267

to the factorization forest. Given a node t, we write start(t) := min≤{y ∈ Leaves(F)∩ Skel(t)} 1268

and end(t) := max≤{y ∈ Leaves(F) ∩ Skel(t)}. 1269

Claim D.1. Let x1, . . . , xk be an independent tuple of k ≥ 1 leaves in a forest F ∈ Fµ
d 1270

factorizing a word w. Let t⃗ be the vector of nodes such that ti := skel-root(xi) for all 1 ≤ i ≤ k. 1271

One can order the ti according to their position in the word w so that 1 < start(t1) ≤ end(t1) < 1272

· · · < start(tk) ≤ start(tk) < |w|. 1273

Proof. Assume by contradiction that there exists a pair i < j such that start(tj) ≥ end(ti). 1274

We then know that start(ti) ≤ start(tj) ≤ end(ti). In particular, skel-root(start(ti)) = ti is an 1275

ancestor of start(tj), hence ti is an ancestor of tj . This contradicts the independence of x⃗. 1276

Assume by contradiction that there exists i such that start(ti) = 1 (resp. end(ti) = |w|). Then 1277

skel-root(xi) must be the root of F , but then x⃗ cannot be an independent tuple. 1278

Given an independent tuple x1, . . . , xk ∈ Leaves(F), with skel-root(x⃗) = t⃗, ordered by their 1279

position in the word, let us define m0 := µ(w[1: start(t1)−1]), mk := µ(w[end(tk)+1:w|w|]) 1280

and mi := µ(w[end(tk)+1: start(ti+1)−1]) for 1 ≤ i ≤ k − 1. 1281

Definition D.2 (Type of a tuple of skel-root). Let F ∈ Fµ
d factorizing a word w, x⃗ be an 1282

independent tuple of leaves in F , and t⃗ = skel-root(x⃗). Without loss of generality assume 1283

that the nodes are ordered by start. The type s-type(⃗t) in the forest F is defined as the tuple 1284

(m0,Skel(t1),m1, . . . ,mk−1,Skel(tk),mk). 1285

At depth d, there are finitely many possible types for tuples of k nodes, which we collect 1286

in the set Typesd,k. Moreover, given a type T ∈ Typesd,k, one can build the MSO formula 1287

has-s-typeT (⃗t) over Fµ
d that tests whether a tuple of nodes t⃗ is of type T , and can be obtained as 1288

skel-root(x⃗) for some tuple x⃗ of independent leaves. The key property of types is that counting 1289

types is enough to count independent valuations for a formula ψ ∈ INV. 1290

Claim D.3. Let k ≥ 1, d ≥ 0, M be a finite monoid, µ : A∗ → M be a morphism. Let 1291

T ∈ Typesd,k, F ∈ Fµ
d , x⃗ and y⃗ be two k-tuples of independent leaves of F such that 1292

s-type(skel-root(x1), . . . , skel-root(xk)) = s-type(skel-root(y1), . . . , skel-root(yk)) = T . 1293

There exists a bijection σ : L1 → L2, where L1 := Leaves(F) ∩
⋃k
i=1 Skel(skel-root(xi)) and 1294

L2 := Leaves(F) ∩
⋃k
i=1 Skel(skel-root(yi)), such that for every z ∈ Lk1 , for every formula 1295

ψ ∈ INVk, F |= ψ(z) if and only if F |= ψ(σ(z)). 1296

Proof Sketch. Because of the type equality, we know that Skel(skel-root(xi)) and 1297

Skel(skel-root(yi)) are isomorphic for 1 ≤ i ≤ k. As the skeletons are disjoint in an independent 1298

tuple, this automatically provides the desired bijection σ. 1299

Let us now prove that σ preserves the semantics of invariant formulas. Notice that this property 1300

is stable under disjunction, conjunction and negation. Hence, it suffices to check the property for 1301

vii

the following three formulas betweenm(x, y), leftm(x), rightm(y) and isleaf(x). For isleaf, the1302

result is the consequence of the fact that σ sends leaves to leaves.1303

Let us prove the result for betweenm and leave the other and leave the other cases as
an exercise. Let (y, z) ∈ L2

1. By definition of L1, there exists 1 ≤ i, j ≤ k such that y ∈
Leaves(F) ∩ Skel(skel-root(xi)) and z ∈ Leaves(F) ∩ Skel(skel-root(xj)). To simplify the
argument, let us assume that y < z and i+ 1 = j. Let w := forest(F), and my,z := µ(w[y : z]).
One can decompose the computation of my,z as follows:

my,z = µ(w[y : z])

= µ(w[y : end(xi)]w[end(xi) + 1 : start(xi+1)− 1]w[start(xi+1) : z])

= µ(w[y : end(xi)])miµ(w[start(xi) : z])

Therefore, µ(w[y : z]) only depends on Skel(skel-root(y)) = Skel(skel-root(xi)), the position1304

of y in Skel(skel-root(y)), Skel(skel-root(z)) = Skel(skel-root(xi+1)), the position of z in1305

Skel(skel-root(z)), and mi, all of which are presreved by the bijection σ. Hence, µ(w[y : z]) =1306

µ(w[σ(y) : σ(z)]). Therefore, F |= betweenm(y, z) if and only if F |= betweenm(σ(y), σ(z)).1307

It is an easy check that a similar argument works when j ̸= i+ 1.1308

Now, we show that counting the valuations of a INV formula can be done by counting the1309

number of tuples of each type.1310

Lemma D.4. Let k ≥ 1, d ≥ 0, M be a finite monoid, µ : A∗ →M be a morphism. For every
ψ ∈ INVk, there exists computable coefficients λT ≥ 0, such that the following functions from
Fµ
d to N are equal:

#ψindep := #(ψ ∧ ¬ sym-dep) =
∑

T∈Typesd,k

λT ·#has-s-typeT

Proof. Using the claim, we can now proceed to prove Lemma D.4.

#ψ ∧ ¬ sym-dep(F) =
∑
x⃗ indep

1F |=ψ(x⃗)

=
∑

T∈Typesd,k

∑
t⃗∈Nodes(F)

∑
x⃗ indep

1F |=ψ(x⃗)1⃗t=skel-root(x⃗)1has-s-typeT (⃗t)

=
∑

T∈Typesd,k

∑
t⃗∈Nodes(F)

1has-s-typeT (⃗t)

 ∑
x⃗ indep

1F |=ψ(x⃗)1⃗t=skel-root(x⃗)


=

∑
T∈Typesd,k

∑
t⃗∈Nodes(F)

1has-s-typeT (⃗t)λT

=
∑

T∈Typesd,k

λT#(has-s-typeT (⃗t))

The coefficient λT does not depend on the specfic t⃗ such that s-type(⃗t) = T thanks to1311

Claim D.3 and the fact that ψ ∈ INV.1312

The behavior of the formulas has-s-typeT is much more regular and enables us to1313

extract pumping families that clearly distinguishes different types. Namely, we are going1314

to prove that given k ≥ 1, d ≥ 0, a finite monoid M , and a morphism µ : A∗ → M ,1315

{#has-s-typeT : T ∈ Typesd,k} is a Z-linearly independent family of functions from Fµ
d to Z.1316

Lemma D.5 (Pumping Lemma). For all T ∈ Typesd,k, there exists a pumping family (wX⃗ , F X⃗)1317

such that for every type T ′ ∈ Typesd,k, #(has-s-typeT ′)(F
X⃗) is ultimately a Z-polynomial in1318

X⃗ that has non-zero coefficient for X1 · · ·Xn if and only if T = T ′.1319

Proof. Let T ∈ Typesd,k be a type, it is obtained as the type of some tuple x⃗ of independent1320

leaves in some F ∈ Fµ
d factorizing a word w. Let ti := skel-root(xi) and Si := Skel(ti) for1321

1 ≤ i ≤ k. Recall that µ(word(Si)) = µ(word(ti)) thanks to Claim III.13. As a consequence,1322

Si is a subforest of ti that provides a valid µ-forest of a subword of word(ti).1323

Now, as ti cannot be the root of the forest F and is the highest ancestor of xi that is not a1324

leftmost or rightmost child, it must be the immediate inner child of an idempotent node in F .1325

viii

As a consequence, µ(word(Si)) = µ(word(ti)) is an idempotent. Therefore, for ever Xi ∈ N, 1326

the tree obtained by replacing ti with Xi copies of Si in F is a valid µ-forest. We write F X⃗ 1327

for the forest F where ti is replaced by Xi copies of Si. This is possible because the tuple 1328

x⃗ is composed of independent leaves, hence ti and tj are disjoint subtrees of F whenever 1329

1 ≤ i ̸= j ≤ k. 1330

Hence, F X⃗ is the factorization forest of the word wX⃗ := α0(w1)
X1α1 . . . αk−1(wk)

Xkαk 1331

where wi = word(Si), αi = w[end(ti)+1: start(ti)−1] for 2 ≤ i ≤ k−1, α0 = w[1: start(t1)−1], 1332

and αk = w[end(tk)+1:|w|] are non-empty factors of w. 1333

We now have to understand the behavior of has-s-typeT ′ over F X⃗ , for every T ′ ∈ Typesd,k. 1334

To that end, let us consider T ′ ∈ Typesd,k. Let us write E for the set of nodes in F X⃗ that are 1335

not appearing in any of the Xi repetitions of Si, for 1 ≤ i ≤ k. The set E has a size bounded 1336

independently of X1, . . . , Xk. To a tuple s⃗ such that F X⃗ |= has-s-typeT ′(s), one can associate 1337

the mapping ρs⃗ : {1, . . . , k} → {1, . . . , k} ⊎ E, so that ρs⃗(i) = si when si ∈ E, and ρs⃗(i) = j 1338

when si is a node appearing in one of the Xj repetitions of the skeleton Sj (there can be at 1339

most one j satisfying this property). 1340

Remark D.6. If s-type(⃗s) = T ′, and ρs⃗(i) = j, then si must be the root of one of the Xj copies 1341

of Sj in F X⃗ . Indeed, t⃗ is obtained as skel-root(y⃗) for some independent tuple y⃗ of leaves. Hence, 1342

si = skel-root(yi) which belong to some copy of Sj , hence si must be the root of this copy of 1343

Sj , because Sj is a binary tree. 1344

Given a map ρ : {1, . . . k} → {1, . . . , k} ⊎ E and a tuple X⃗ ∈ Nk, we let Cρ(X⃗) be the set
of tuples s⃗ of nodes of F X⃗ such that s-type(⃗s) = T ′, and such that ρs⃗ = ρ. This allows us to
rewrite the number of such vectors as a finite sum:

#(has-s-typeT ′ (⃗t))(F
X⃗) =

∑
ρ : {1,...,k}→{1,...,k}⊎E

#Cρ(X⃗)

Claim D.7. For every ρ : {1, . . . , k} → {1, . . . , k} ⊎ E, #Cρ(X⃗) is ultimately a Z-polynomial 1345

in X⃗ . Moreover, its coefficient for X1 · · ·Xk is non-zero if and only if ρ(i) = i for 1 ≤ i ≤ k. 1346

Proof. Assume that Cρ(X⃗) is non-empty. Then choosing a vector s⃗ ∈ Cρ(X⃗) is done by fixing 1347

the image of si to ρ(i) when ρ(i) ∈ E, and selecting pj := |ρ−1({j})| non consecutive copies 1348

of Sj among among the Xj copies available. All nodes are accounted for since Remark D.6 1349

implies that whenever si is in a copy of Sj , then si is the root of this copy, and since s⃗ is 1350

independent, they cannot be direct siblings. 1351

The number of ways one can select p non consecutive nodes in among X nodes is (for large 1352

enough X) the binomial number
(
X−p+1

p

)
, as it is the same as selecting p positions among 1353

X − p+ 1 and then adding p− 1 separators. 1354

As a consequence, the size of Cρ(X⃗) is ultimately a product of
(
Xj−pj+1

pj

)
for the non-zero pj , 1355

which is a Z-polynomial in X1, . . . , Xk. Moreover, it has a non-zero coefficient for X1 . . . Xk 1356

if and only if pj ̸= 0 for 1 ≤ j ≤ k, which is precisely when ρ(i) = i. 1357

We have proven that #(has-s-typeT ′)(F
X⃗) is a Z-polynomial in X1, . . . , Xk, and that the 1358

only term possibly having a non-zero coefficient for X1 · · ·Xk is #Cid(X⃗). Notice that if 1359

#Cid(X⃗) is non-zero, we immediately conclude that T = T ′. 1360

Claim D.8. Let P ∈ R[X1, . . . , Xn] which evaluates to 0 over Nn, then P = 0. 1361

Proof. The proof is done by induction on the number n of variables. If P has one variable and 1362

P|N = 0, then P has infinitely many roots and P = 0. Now, let P having n+ 1 variables, and 1363

such that P (x1, . . . , xn, xn+1) = 0 for all (x1, . . . , xn+1) ∈ Nn+1. By induction hypothesis, 1364

P (X1, . . . , Xn, xn+1) = 0 for all xn+1 ∈ N. Hence for all x1, . . . , xn ∈ R, P (x1, . . . , xn, Xn+1) 1365

is a polynomial with one free variable having infinitely many roots, hence P (x1, . . . , xn, xn+1) = 1366

0 for every xn+1 ∈ R. We have proven that P = 0. 1367

We now have all the ingredients to prove Lemma III.23, allowing us to pump functions built 1368

by counting independent tuples of invariant formulas. 1369

Let k ≥ 1, and findep be a linear combination of #ψi ∧ ¬ sym-dep, where ψi ∈ INVk. Assume 1370

moreover that findep ̸= 0. Thanks to Lemma D.4, every #ψi ∧ ¬ sym-dep can be written as a 1371

ix

linear combination of #has-s-typeT (⃗t), hence findep =
∑
T∈Typesd,k

λT#has-s-typeT , and the1372

coefficients λT (now in Z) are computable.1373

Since findep ̸= 0, there exists T ∈ Typesd,k such that λT ̸= 0. Using Lemma D.5, there exists1374

a pumping family (wX⃗ , F X⃗) adapted to T . In particular, f(F X⃗) is ultimately a Z-polynomial in1375

X⃗ , and its coefficient in X1 · · ·Xk is the sum of the coefficients in X1 · · ·Xk of the polynomials1376

#has-s-typeT ′(F
X⃗) multiplied by λT ′ . This coefficient is non-zero if and only if T = T ′. Hence,1377

f(F X⃗) is ultimately a Z-polynomial with a non-zero coefficient for X1 · · ·Xk.1378

As a side result, we have proven that a linear combination of #has-s-typeT is the constant1379

function 0 if and only if all the coefficient are 0, which is decidable since one can enumerate1380

all the elements of Typesd,k. For the converse implication, one leverages Claim D.8: if one1381

coefficient is non-zero, then the polynomial f(F X⃗) must be non-zero.1382

E. Proof of Lemma III.241383

Let P,Q ∈ R[X1, . . . , Xn] be such that |P | = O(|Q|). We show that deg(P) ≤ deg(Q).1384

If P = 0, then deg(P) ≤ deg(Q). Otherwise, let us write P = P1+P2 with P1 containing all1385

the terms of degree exactly deg(P) in P . Because |P | = O(|Q|), there exists N ≥ 0 and C ≥ 01386

such that |P (x1, . . . , xn)| ≤ C|Q(x1, . . . , xn)| for all x1, . . . , xn ∈ N such that x1, . . . , xn ≥ N .1387

Because P1 is a non-zero polynomial, there exists a tuple (x1, . . . , xn) ∈ N \ {0} such that1388

α := P1(x1, . . . , xn) ̸= 0 (Claim D.8). Let us now consider R(Y) := P (Y x1, . . . , Y xn) ∈ R[Y],1389

and S(Y) := Q(Y x1, . . . , Y xn) ∈ R[Y]. Notice that R(Y) has degree exactly deg(P) and its1390

term of degree deg(P) is αY deg(P). Furthermore, S(Y) is a polynomial in Y of degree at most1391

deg(Q), with dominant coefficient β ̸= 0. We know that for Y large enough, |R(Y)| ≤ C|S(Y)|.1392

Since |R(Y)| ∼+∞ |α|Y deg(P), and |S(Y)| ∼+∞ |β|Y deg(S) ≤ |β|Y deg(Q), we conclude that1393

deg(P) ≤ deg(Q).1394

APPENDIX E1395

PROOFS OF SECTION IV1396

A. Proof of Claim IV.41397

Let k ≥ 0, f ∈ ZPolyk and u ∈ A∗. We want to show that u ▷ f ∈ ZPolyk. Notice that for1398

every u, the map u□ : w 7→ uw is regular, hence u ▷ f = f ◦ (u□) belongs to ZPolyk thanks to1399

Proposition II.10.1400

B. Proof of Claim IV.71401

The fact that ∼k is an equivalence relation is obvious from the properties of ZPoly. Furthermore1402

if f ∼k g, then f−g ∈ ZPolyk, thus u ▷ (f−g) = u ▷ f − u ▷ g ∈ ZPolyk by Claim IV.4.1403

Furthermore it is obvious that δ · f ∼k δ · g, and if f ′ ∼k g′ then f + f ′ ∼k g + g′.1404

It remains to show that u ▷ (1L⊗ f) ∼k (u ▷1L)⊗ f for L ⊆ A∗ and for this we proceed by1405

induction on |u|. By expanding the definitions we note that a ▷ (1L⊗ g) = (a ▷1L)⊗ g+1L(ε)×1406

(a ▷ g) for all a ∈ A. By Claim IV.4 we get a ▷ g ∈ ZPolyk, hence a ▷ (1L⊗ g) ∼k (a ▷1L)⊗ g.1407

The result follows since a ▷1L = 1a−1L and by Theorem II.18.1408

C. Proof of Lemma IV.81409

We first note that u ▷ (δf + ηg) = δ(u ▷ f) + η(u ▷ g), for all f, g : A∗ → Z, δ, η ∈ Z1410

and u ∈ A∗. Hence it suffices to show that Lemma IV.8 holds on a set S of functions such1411

that SpanZ(S) = ZPolyk. For k = 0, we can chose S := {1L : L regular}. As observed1412

above, we have u ▷1L = 1u−1L and the result holds since regular languages have finitely many1413

residual languages. For k ≥ 1, we can choose S := {1L⊗ g : g ∈ ZPolyk−1, L regular} by1414

Proposition II.16. Let 1L⊗ g ∈ S. Then by Claim IV.7 we get u ▷ (1L⊗ g) ∼k−1 (u ▷1L)⊗ g =1415

1u−1L⊗ g. Since a regular language has finitely many residual languages, there are finitely many1416

∼k−1-equivalence classes for the (function) residuals of 1L⊗ g.1417

x

D. Proof of Lemma IV.17 1418

Let f : A∗ → Z be a function such that Res(f)/ ∼k−1. We apply Algorithm 1, which computes 1419

the set of residuals of f and the relations between them. The states of our machine are not labelled 1420

by the equivalence classes of Res(f)/ ∼k−1, but directly by some elements of Res(f). Remark 1421

that the labels on the transitions are of the form w ▷ f − v ▷ f when w ▷ f ∼k−1 v ▷ f , hence 1422

are in SpanZ(Res(f)) ∩ ZPolyk−1 by definition of ∼k−1 (observe that the construction of these 1423

labels is effective and that equivalence of residuals is decidable if we start from f ∈ ZPolyk). 1424

Now, let us justify the correctness and termination of Algorithm 1. 1425

First, we note that it maintains two sets O and Q such that O ⊎ Q ⊆ Res(f) and for all 1426

f, g ∈ O ⊎Q we have f ̸= g ⇒ f ̸∼k−1 g. Hence the algorithm terminates since Res(f)/ ∼k−1 1427

is finite and Q increases at every loop. At the end of its execution, we have for all q ∈ Q and 1428

a ∈ A, that δ(q, a) ∼k−1 a ▷ q and λ(q, a) = a ▷ q − δ(q, a). 1429

Let us show by induction on n ≥ 0 that for all a1 · · · an ∈ A∗, if q0 →a1 q1 →a2 · · · →an qn 1430

is the run labelled by a1 · · · an in the underlying automaton , and g1 · · · gn are the functions 1431

which label the transitions, we have qn ∼k−1 a1 · · · an ▷ f and for all w ∈ A∗, f(a1 · · · anw) = 1432∑n
i=2 gi(ai · · · anw) + qn(w). For n = 0 the result is obvious because q0 = f . Now, assume 1433

that the result holds for some n ≥ 0 and let a1 · · · anan+1 ∈ A∗. Let q0 →a1 q1 →a2 · · · →an+1 1434

qn+1 be the run and g1 · · · gn+1 be the labels of the transitions. Since qn ∼k−1 a1 · · · an ▷ f 1435

(by induction) we get an+1 ▷ qn ∼k−1 a1 · · · anan+1 ▷ f by Claim IV.7. Because qn+1 = 1436

δ(qn, an+1) ∼k−1 an+1 ▷ qn, then qn+1 ∼k−1 a1 · · · anan+1 ▷ f . Now, let us fix w ∈ A∗. We 1437

have f(a1 · · · anan+1w) =
∑n
i=2 gi(ai · · · anan+1u)+ qn(an+1w) by induction hypothesis. But 1438

since gn+1 = λ(qn, an+1) = an+1 ▷ qn− δ(qn, an+1) = an+1 ▷ qn− qn+1 we get qn(an+1w) = 1439

gn+1(w) + qn+1(w). We conclude the proof that Algorithm 1 provides a k-residual transducer 1440

for f by considering w = ε and the definition of F . 1441

E. Proof of Corollary IV.19 1442

Lemma IV.17 shows that any function from ZPolyk is computed by its k-residual transducer 1443

(which is in particular a ZPolyk−1-transducer). Conversely, given a ZPolyk−1-transducer 1444

computing f , it is easy to write f as a linear combination of elements of the form 1L⊗ g (see 1445

e.g. Section F-B), where g is the label of a transition, thus f ∈ ZPolyk−1. 1446

F. Proof of Corollary IV.20 1447

Every map in ZPolyk has finitely many residuals up to ∼k−1 thanks to Lemma IV.8. We now 1448

prove the converse implication. Let f such that Res(f)/ ∼k−1 is finite. By Lemma IV.17 there 1449

exists a k-residual transducer of f (which is in particular a ZPolyk−1-transducer). Thanks to 1450

Corollary IV.19, it follows that f ∈ ZPolyk. 1451

APPENDIX F 1452

PROOFS OF SECTION V 1453

A. Proof of Claim V.6 1454

Let L be a regular language such that 1L is ultimately 1-polynomial. Then, for every u,w, v ∈ 1455

A∗, there exists a polynomial P ∈ Q[X], such that 1L(uwXv) = P (X) for X large enough. 1456

This implies that P is a constant polynomial, and in particular 1L(uwX+1v) = 1L(uw
Xv) for 1457

X large enough. As a consequence, the syntactic monoid of L is aperiodic, thus L is star-free 1458

[5]. Conversely, assume that L is star-free. It is recognized by a morphism µ into an aperiodic 1459

finite monoid M . Because M is aperiodic, for every x ∈ M , x|M |+1 = x|M |. Hence, for all 1460

α0, w1, α1, . . . , wℓ, αℓ ∈ A∗, 1L(α0w
X1
1 α1 · · ·wXℓ

ℓ αℓ) is constant for X1, . . . , Xℓ ≥ |M | since 1461

it only depends on the image µ(α0w
X1
1 α1 · · ·wXℓ

ℓ αℓ). 1462

B. Proof of Lemma V.14 1463

Let T = (A,Q, q0, δ, λ) be a counter-free ZSFk−1-transducer computing a function f : A∗ →
Z. Since the deterministic automaton (A,Q, q0, δ) is counter-free, then by [4] for all q ∈ Q the
language Lq := {u : δ(q0, u) = q} is star-free. So is Lqa for all a ∈ A. Now observe that:

f =
∑
q∈Q
a∈A

1Lqa⊗λ(q, a).

We conclude thanks to Equation (3). 1464

xi

C. Proof of Lemma V.161465

Let k ≥ 0. Let f ∈ ZPolyk which is ultimately 1-polynomial and T = (A,Q, q0, δ,H, λ, F)1466

be a k-residual transducer of f . Since ultimate 1-polynomiality is preserved under taking linear1467

combinations and residuals, the function labels of T are ultimately 1-polynomial (by definition1468

of a k-residual transducer). It remains to show that T is counter-free.1469

Let α,w ∈ A∗ and suppose that δ(q0, α) = δ(q0, αw
n) for some n ≥ 1. We want to show that1470

δ(q0, αw) = δ(q0, α). Since δ(q0, α) = δ(q0, αw
nX) and δ(q0, αw) = δ(q0, ααw

nX+1) for all1471

X ≥ 1, it is sufficient to show that we have δ(q0, αwnX+1) = δ(q0, αw
nX) for some X ≥ 1.1472

Let M ≥ 1 given by Definition II.26 for the ultimate 1-polynomiality of f . We want to show
that (αwnM+1 ▷ f) ∼k−1 (αwnM ▷ f), i.e. |(αwnM+1 ▷ f)(w)− (αwnM ▷ f)(w)| = O(|w|k−1)
since the residuals belong to ZPoly. For this, let us pick any α0, w1, α1, · · · , wk, αk ∈ A∗. By
Theorem III.3, it is sufficient to show that:

|(αwnM ▷ f − αwnM+1 ▷ f)(α0w
X1
1 · · ·wXk

k αk))|
= O((X1 + · · ·+Xk)

k−1)

Because f is ultimately 1-polynomial, for all X,X1, · · · , Xk ≥M , f(αwXα0w
X1
1 · · ·wXk

k αk)
is a polynomial P (X,X1, . . . , Xk). Our goal is to show that |P (nM,X1, . . . , Xk)− P (nM +
1, X1, . . . , Xk)| = O(|X1 + · · ·+Xk|k−1). Since f ∈ ZPolyk, we have |P (X,X1, . . . , Xk)| =
O(|X +X1 + · · · +Xk|k). Thus by Lemma III.24, P has degree at most k, hence it can be
rewritten under the form P0 +XP1 + · · ·+XkPk where Pi(X1, . . . , Xk) has degree at most
k − i. Therefore:

|P (nM,X1, . . . , Xk)− P (nM + 1, X1, . . . , Xk)|
=
∣∣∣∑k

i=1 Pi(X1, . . . , Xk)((nM)i − (nM + 1)i)
∣∣∣

≤
∑k
i=1 |Pi(X1, . . . , Xk)|(nM + 1)i

since the term P0 vanishes when doing the subtraction. The result follows since the polynomials1473

Pi for 1 ≤ i ≤ k have degree at most k−1.1474

D. Proof of Proposition V.171475

The proof of the proposition is essentially the same as Proposition II.11 by noticing that1476

everything remains FO-definable. We will underline the parts where the two proofs differ, and1477

in particular when using stability properties of star-free polyregular functions.1478

We first show that any star free Z-polyregular function can be written under the form sum ◦g1479

where g : A∗ → {±1}∗ is star-free polyregular. This is a consequence of the following claims.1480

Claim F.1. For all φ ∈ FO, there exists a star-free polyregular function f : A∗ → {±1}∗ such1481

that #φ = sum ◦f .1482

Proof. Star-free polyregular functions are characterized in [20, Theorem 7] as the functions1483

computed by (multidimensional) FO-interpretations. Recall that an FO-interpretation of dimension1484

k ∈ N is given by a FO formula φ≤(x⃗, y⃗) defining a total ordering over k-tuples of positions, a1485

FO formula φDom(x⃗) that selects valid positions, and FO formulas φa(x⃗) that place the letters1486

over the output word [20, Definition 1 and 2]. In our specific situation, letting φ≤ be the usual1487

lexicographic ordering of positions (which is FO-definable) and placing the letter 1 over every1488

element of the output is enough: the only thing left to do is select enough positions of the output1489

word. For that, we let φDom be defined as φ itself. It is an easy check that this FO-interpretation1490

precisely computes 1f(w) over w, hence computes f when post-composed with sum.1491

Claim F.2. The set {sum ◦f : f : A∗ → {±1}∗ star-free polyregular} is closed under sums and1492

external Z-products.1493

Proof. Notice that sum ◦f + sum ◦g = sum ◦(f · g) where f · g(w) := f(w) · g(w). As star-free1494

polyregular functions are closed under concatenation [7], the set of interest is closed under1495

sums. To prove that it is closed under external Z-products, it suffices to show that it is closed1496

under negation. This follows because one can permute the 1 and −1 in the output of a star-free1497

polyregular function (star-free polyregular functions are closed under post-composition by a1498

morphism [7, Theorem 2.6]).1499

xii

Let us consider a star-free polyregular function g : A∗ → {±1}∗. The maps g+ : w 7→ 1500

|g(w)|1 and g− : w 7→ |g(w)|−1 are star-free polyregular functions with unary output (since they 1501

correspond to a post-composition by the star-free polyregular function which removes some letter, 1502

and polyregular functions are closed under post-composition by a regular function [7]). Hence 1503

g− and g+ are star-free polyregular functions with unary output, a.k.a. star-free N-polyregular 1504

functions. As a consequence, sum ◦ g = g+ − g− lies in ZSF. 1505

E. Proof of Proposition VI.2 1506

Item 3 ⇒ Item 2 is obvious. For Item 2 ⇒ Item 1, it is sufficient to show that if φ(X1, . . . , Xn) 1507

is an MSOX formula, then #φ is a Z-polyregular function. We show the result for n = 1, i.e. 1508

for a formula φ(X). Let us define the language L ⊆ (A× {0, 1})∗ such that (w, v) ∈ L if and 1509

only if w |= φ(S) where S := {1 ≤ i ≤ |w| : v[i] = 1}. Using the classical correspondence 1510

between MSO logic and automata (see e.g. [17]), the language L is regular, hence it is computed 1511

by a finite deterministic automaton A. Given a fixed w ∈ A∗, there exists a bijection between the 1512

accepting runs of A whose first component is w and the sets S such that w |= φ(S). Consider the 1513

(nondeterministic) Z-weighted automaton A′ (this notion is equivalent to Z-linear representations, 1514

see e.g. [11]) obtained from A by removing the second component of the input, adding an output 1515

1 to all the transitions of A, and giving the initial values 1 (resp. final values 1) to the initial 1516

state (resp. final states) of A. All other transitions and states are given the value 0. Given a fixed 1517

w ∈ A∗, it is easy to see that A′ has exactly #φ(w) runs labelled by w whose product of the 1518

output values is 1 (and the others have product 0). Thus A computes #φ. This proof scheme 1519

adapts naturally to the case where n ≥ 1. 1520

For Item 1 ⇒ Item 3, let us consider a linear representation (I, µ, F) of a Z-rational series. 1521

Claim F.3. Without loss of generality, one can assume that µ(A∗) ⊆ Mn,n({0, 1}), at the cost 1522

of increasing the dimension of the matrices. 1523

Proof Sketch. Let N := min(1,max{|µ(a)i,j | : a ∈ A, 1 ≤ i, j ≤ n}), we define the new
dimension of our system to be m := n × N × 2. As a notation, we assume that matrices
in Mm,m have their rows and columns indexed by {1, . . . , n} × {1, . . . , N} × {±}. For all
a ∈ A, let us define ν(a) ∈ Mm,m as follows: for all 1 ≤ i, j ≤ n, 1 ≤ v, v′ ≤ N

ν(a)(i,v,+),(j,v′,+) =

{
1 if |µ(a)i,j | ≥ v′ ∧ 0 < µ(a)i,j

0 otherwise

ν(a)(i,v,+),(j,v′,−) =

{
1 if |µ(a)i,j | ≥ v′ ∧ 0 > µ(a)i,j

0 otherwise

ν(a)(i,v,−),(j,v′,−) =

{
1 if |µ(a)i,j | ≥ v′ ∧ 0 < µ(a)i,j

0 otherwise

ν(a)(i,v,−),(j,v′,+) =

{
1 if |µ(a)i,j | ≥ v′ ∧ 0 > µ(a)i,j

0 otherwise

Let us now adapt the final vector by defining for every 1 ≤ i ≤ n, 1 ≤ v ≤ N , F ′(i,v,+)
:= 1524

max(0, Fi), and F ′(i,v,−) := −min(0, Fi). For the initial vector, let us define for every 1 ≤ i ≤ n, 1525

I ′(i,1,+) = Ii and I ′(i,1,−) = −Ii, and let I ′ be zero otherwise. It is then an easy check that 1526

(I ′, ν, F ′) computes the same function as (I, µ, F). 1527

As a consequence, Iµ(w)F =
∑
i,j Iiµ(w)i,jFj , let us now rewrite this sum as a counting 1528

MSO formula with set free variables. 1529

For all 1 ≤ i, j ≤ n, one can write an MSO formula ψi,j(x) such that for all 1 ≤ p ≤ |w|,
w |= ψi,j(p) if and only if µ(w[p])i,j = 1. Furthermore, for all 1 ≤ i, j ≤ n, one can write
an MSO formula θi,j with variables X in

p , X
out
p for 1 ≤ p ≤ n such that a word w satisfies θi,j

whenever for every position x of w there exists a unique pair 1 ≤ p, q ≤ n such that x ∈ X in
p

xiii

and x ∈ Xout
q , if x ∈ Xout

p then (x+ 1) ∈ X in
p , the first position of w belongs to X in

i and Xout
i ,

and the last position of w belongs to X in
j and Xout

j .

µ(w)i,j =
∑

s : {1,...,k−1}→{1,...,n}

µ(w[1])i,s(1)µ(w[|w|])s(k−1),j
|w|−1∏
k=2

µ(w[k])s(k),s(k+1)

= #

θi,j ∧ ∀x.
∧

1≤i,j≤n

(x ∈ X in
i ∧ x ∈ Xout

j) ⇒ ψi,j(x)


︸ ︷︷ ︸

:=τi,j

(w)

We have proven that Iµ(w)F is a Z-linear combination of the counting formulas τi,j via1530

Iµ(w)F =
∑
i,j IiFj ·#τi,j(w). Notice that all the formulas used never introduced set quantifiers,1531

hence the formulas belong to FO and have MSO free variables.1532

	Introduction
	Z-polyregular functions
	Counting valuations on finite words
	Regular and polyregular functions
	Rational series and rational expressions
	Rational series and representations

	Free Variable Minimization and Growth Rate
	Residual Transducers
	Residuals of a function
	Residual transducers

	Star-free Z-polyregular functions
	Deciding star-freeness
	Relationship with polyregular functions and rational series

	Outlook
	References
	Appendix A: Proofs of sec:prelim
	Proof of prop:precompose
	Proof of prop:polypoly

	Appendix B: Proofs of ssec:expressions
	Proof of claim:vks:cauchyincrease
	Proof of lem:vks:inductcauchy

	Appendix C: Proofs of ssec:matrix
	Proof of lem:capturing-eigenvalues
	Proof of lem:Zpoly-pump-first

	Appendix D: Proofs of sec:pebblemin
	Proof of claim:skel:skeletons-totally-ordered
	Proof of rem:skel:bound-depnodes
	Proof of lem:skel:inv-decomp
	Proof of lem:skel:indep-iter-zero
	Proof of lem:skel:lemmapoly

	Appendix E: Proofs of sec:residual
	Proof of claim:push-pk
	Proof of claim:properties-resi
	Proof of lem:resifini
	Proof of lem:resitrans
	Proof of cor:Vk-trans
	Proof of cor:faux

	Appendix F: Proofs of sec:aperiodic
	Proof of ex:1poly-aperiodic
	Proof of lem:aper:counterfreefo
	Proof of lem:up-cf
	Proof of prop:mikolaj2
	Proof of prop:counting-mso-variables

