Réduction Espaces préhilbertiens réels

MP-SEMAINE 19

1 Réduction

■ 397 ■ TAGS : mp | reduction | trigonalise | crochet | lie | Exercice 1 (*Crochet de Lie*).

Soit E un $\mathbb C$ espace vectoriel de dimension finie $n \geq 1$. Si $u,v \in \mathbb L(E)$ on pose $[u,v] = u \circ v - v \circ u$.

- 1. Supposons $[u, v] = \alpha u$, calculer $[u^p, g]$.
- 2. En déduire un ensemble de valeurs propres pour l'opérateur $h \mapsto [h, v]$
- 3. Conclure que u est nilpotente.
- 4. Montrer que $\ker u$ est stable par v
- 5. En déduire que u et v ont un vecteur propre commun.
- 6. En appliquant ce résultat aux transposées, déduire que u et v ont un hyperplan stable commun.

Indication:
$$x^T A y = (A^T x)^T y...$$

- 7. Conclure que u et v sont co-trigonalisables.
- 8. Adapter le raisonnement précédent pour avoir la même conclusion quand $[u,v]=\alpha u+\beta v$

Indication : Poser
$$f = u + \frac{\beta}{\alpha}v$$
 ...

■ 346 ■ TAGS: mp | polynome | endomorphisme | algebre | lineaire |

Exercice 2 (Valeur propre commune).

Soient A et B deux matrices carrées.

- 1. Soit $P \neq 0$ tel que AP = PB, montrer que A et B ont une valeur propre commune Sous questions :
 - (a) Que dire des polynômes en A et en B?
 - (b) Quel est le lien entre valeurs propres et racines de polynômes?
 - (c) Quelle est l'écriture factorisée du polynôme caractéristique?
 - (d) En déduire que $(B \lambda_i I)$ est non inversible pour un certain i
- 2. Montrer la réciproque

Sous questions:

- (a) Soit v, λ un élément propre commun à A et B, décomposer l'espace en somme directe.
- (b) Définir P sur la décomposition de manière à ce que Pv = v et Px = 0 autrement
- (c) Conclure que *P* convient.

■ 392 ■ TAGS : mp | reduction | kronkecker | polynome | Exercice 3 (*Théorème de Kronecker*).

- 1. Soit $P \in \mathbb{Z}[X]$ unitaire et de degré n. Existe-t-il une matrice M à coefficients entiers dont le polynôme caracrésitique est P?
- 2. Soit P un polynôme unitaire de degré n à coefficients entiers avec pour racines $(\lambda_i)_i$ comptées avec multiplicité. Considérons $q \ge 1$

Montrer que le polynôme suivant est à coefficients entiers

$$P_q = \prod_{i=1}^n \left(X - \lambda_i^q \right) \tag{1}$$

- 3. Soit P un polynôme unitaire de degré n à coefficients entiers dont toutes les racines sont de module inférieur à 1.
 - Montrer qu'il y a un nombre fini de polynômes P_q
 - En déduire que les racines de *P* non nulles sont des racines de l'unité.
- 393 TAGS : mp | spectre | reduction | operateurs | Exercice 4 (*Une équation matricielle*).
 - 1. Pour une matrice $A \in \mathcal{M}_2(\mathbb{C})$ on pose

$$\sin(A) = \sum_{n \ge 0} \frac{(-1)^n}{(2n+1)!} A^{2n+1} \tag{2}$$

Justifier l'existence d'une telle matrice

- 2. Calculer $\sin A$ dans le cas où A est diagonale
- 3. Calculer $\sin A$ dans le cas où A est trigonale
- 4. Existe-t-il une matrice $A \in \mathcal{M}_2(\mathbb{C})$ vérifiant l'égalité suivante ?

$$\sin A = \begin{pmatrix} 1 & 2019 \\ 0 & 1 \end{pmatrix} \tag{3}$$

2 Espaces préhilbertiens réels

■ 405 ■ TAGS : mp | vectoriel | hilbertien | topologie | polynome | orthogonal | Exercice 5 (*Polynômes orthogonaux*).

On munit $\mathbb{R}[X]$ du produit scalaire suivant

$$\langle P, Q \rangle = \int_{-1}^{1} P(t)Q(t)dt$$
 (4)

- 1. Établir l'existence et l'unicité d'une suite de polynômes P_n deux à deux orthogonaux tels que P_n est de degré n et de coefficient dominant 1.
- 2. Étudier la parité des polynômes P_n
- 3. Prouver que $P_{n+1} XP_n$ est un élément orthogonal à $\mathbb{R}_{n-2}[X]$

Indication :
$$\langle XP_n, Q \rangle = \langle P_n, XQ \rangle$$

4. En déduire qu'il existe une suite λ_n telle que

$$P_{n+1} = XP_n + \lambda_n P_{n-1} \tag{5}$$

Indication : Degré, orthogonalité et parité

■ 406 ■ TAGS: mp | vectoriel | hilbertien | topologie | orthogonal | **Exercice 6** (Famile obtusangle).

Soit (x_1,\ldots,x_n) une famille de vecteurs de E un espace préhilbertien réel avec $n\geq 2$. On suppose

$$\forall 1 \le i \ne j \le n, \langle x_i | x_j \rangle < 0 \tag{6}$$

Montrer que toute sous famille de n-1 vecteurs est libre.

Indication : Récurrence